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Abstract

The rapid pace of growth in the field of human genetics has left researchers

with many new challenges in the area of security and privacy. To encourage

participation and foster trust towards research, it is important to ensure

that genetic databases are adequately protected. This task is a particularly

challenging one for statistical agencies due to the high prevalence of cate-

gorical data contained within statistical genetic databases. The absence of

natural ordering makes the application of traditional Statistical Disclosure

Control (SDC) methods less straightforward, which is why we have proposed

a new noise addition technique for categorical values.

The main contributions of the thesis are as follows.

We provide a comprehensive analysis of the trust relationships that occur

between the different stakeholders in a genetic data warehouse system. We

also provide a quantifiable model of trust that allows the database manager

to granulate the level of protection based on the amount of trust that exists

between the stakeholders. To the best of our knowledge, this is the first

time that trust has been applied in the SDC context.

We propose a privacy protection framework for genetic databases which

is designed to deal with the fact that genetic data warehouses typically con-

tain a high proportion of categorical data. The framework includes the use

of a clustering technique which allows for the easier application of traditional

noise addition techniques for categorical values.

Another important contribution of this thesis is a new similarity measure

for categorical values, which aims to capture not only the direct similarity

between values, but also some sense of transitive similarity. This novel mea-

sure also has possible applications in providing a way of ordering categorical

xiii



Abstract xiv

values, so that more traditional SDC methods can be more easily applied

to them. Our analysis of experimental results also points to a numerical

attribute phenomenon, whereby we typically have high similarity between

numerical values that are close together, and where the similarity decreases

as the absolute value of the difference between numerical values increases.

However, some numerical attributes appear to not behave in a strictly ‘nu-

merical’ way. That is, values which are close together numerically do not

always appear very similar.

We also provide a novel noise addition technique for categorical values,

which employs our similarity measure to partition the values in the data

set. Our method - VICUS - then perturbs the original microdata file so

that each value is more likely to be changed to another value in the same

partition than one from a different partition. The technique helps to ensure

that the perturbed microdata file retains data quality while also preserving

the privacy of individual records.



Chapter 1

Introduction

“The essence of life is statistical improbability on a colossal scale.”

–Richard Dawkins

As members of the human race we all share a common genetic bond; each

of our cells contains the necessary information needed to create and sustain

life. This fundamental truth hints at the potential benefits to be obtained by

gaining a better insight into the workings of the human cell and the genome

in particular. The undertaking of such work requires large amounts of ge-

netic sequencing data, along with other supplementary information about

the individual, stored in large genetic data warehouses. Increasingly, the col-

lection of such information is being carried out on a larger scale, indeed in

some cases on whole populations, and the prospective insights and benefits

to be acquired from these genetic databases should not be under-estimated.

Indeed advances in both computing power and bioinformatics algorithms

has led to an acceleration in the amount of insight gained from genetic data

warehouses. However, we must also bear in mind that there are many legal

and ethical issues that need to be considered, especially when the potential

damage to the individual’s privacy is so great. In this chapter we discuss

these important issues and give insight into why it is so important to ad-

equately secure genetic information, but also why it can be so technically

difficult to do so.

1
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The organisation of this chapter is as follows. We first give a brief primer

on genetics so as to better understand the nature of the information that can

be stored in genetic data warehouses and discuss the reasons why genetic

information differs from other types of data, and in particular its inher-

ently predictive nature and the potential for genetic discrimination. We

next outline specific research questions addressed by the thesis and finally

provide an overview of the structure of the thesis and in particular discuss

the contribution that the thesis makes in the areas of Statistical Disclosure

Control.

1.1 Genetic Information Challenges

To fully understand the fundamental importance of genetic information we

must first understand what constitutes genetic data. As members of the

human race we all share a collective narrative of how we came to be the

unique individuals that we are. Through the coming together of a human egg

and sperm, i.e. the process of fertilisation, an embryo is formed containing all

of the genetic material needed to create life. Egg and sperm cells are a special

type of sex cell (gamete), and each contain a single set of 23 chromosomes

[101]. The other type of cells in our body are known as somatic cells and

each such cell contains 46 chromosomes, half from our mother’s egg (ovum)

and the other half from our father’s sperm. We each have over 100 trillion

somatic cells in our body and each one contains all the instructions needed

to maintain life, encoded in our DNA (deoxyribonucleic acid) in the form of

genes [101].

Looking at Figure 1.1 we can see an overview of how the main players in

this genetic game fit together. Within the nucleus of each somatic cell are

the 23 pairs of chromosomes mentioned above. A chromosome is a single

strand or molecule of DNA, and each chromosome contains a certain number

of genes within its structure, with each gene situated at a specific position

(locus) on the DNA molecule. So in essence a gene is just a long sequence of

DNA. The chemical structure of DNA is in the form of the famous double

helix, comprising a hydrogen bonding of the four nucleotide bases: adenine

(A), guanine (G), cytosine (C) and thymine (T)[101]. Hence our DNA can
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Figure 1.1: Association between genetic components of the cell.

in effect be written in a language comprising only four letters.

A genome refers to the sum total of DNA within an organism, comprising

both genes and other DNA sequences [111]. Although the majority of our

DNA is contained within the structure of chromosomes, we also have a

small amount of DNA contained in the cell’s mitochondrion: around 13

genes, encoded in a DNA molecule consisting around 16,500 bases [73]. Each

gene contains the instructions for the creation and operation of proteins in

the body. The details of how this process occurs is not important to our

discussion here, so we refer interested readers to any standard introductory

biology text for more information on this subject [73, 101]. What we focus

on here is that our chemical basis of heredity is contained in our genome.

To this point we have discussed the fundamental genetic building blocks

that we all share; in fact the ordering of the nucleotide bases in the genome

is over 99% the same for all of us [63, 51]. So, if we’re all ‘made of the same

stuff’ what sets us apart from one another? In a word: mutations. The

process of protein synthesis that occurs within a cell involves making copies

of sequences of DNA, namely via the processes of transcription and transla-

tion. During these processes an error can occur that causes a change in the

ordering of the bases, this is known as a mutation, and it is such variations

in the genome that introduces diversity into the population [106]. Such a

variation in our DNA at a particular location (locus) in the genome is known
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as a polymorphism [106]. The collection of all of these polymorphisms within

a population, at a particular locus, are termed alleles [106]. Ultimately it

is our particular genetic traits, our genotype, and the environment in which

we live that sets us apart from the rest of the human species. The phys-

ical manifestations of our combined genotype and environmental factors is

termed our phenotype [73, 106]. A mutation only becomes a problem for us

when it results in a change in the way a gene produces a protein, or indeed

prevent the protein production completely [101].

There are many issues arising from the storage and analysis of genetic

information, mainly due to its inherently predictive nature [51, 52]. While

some would argue that genetic information requires no further protection

than traditional medical data [25], we subscribe to the view that genetic

data poses exceptional challenges that warrant additional protection. Sev-

eral of the potential misuses arising from the predictive nature of genetic in-

formation include possible discriminatory effects and family or ethnic group

correlations [52]. These potential pitfalls point to an increased need for the

proper application of ethics in relation to the collection, storage and analysis

of genetic information. Ethics is defined in the Concise Oxford Dictionary

as “the moral principles governing or influencing conduct” [102, p.490]. So

what sort of moral principles are we dealing with in the context of genetic

databases? We summarise them as follows:

• Privacy, informed consent and intellectual property [111]

• Autonomy: ability, security, knowledge, freedom, opportunity and re-

sources [95]

• Duty to know: does a person who finds out they have a genetic dis-

order, or are a genetic carrier for one, have an obligation to inform

relatives? [109]

One recent example of where appropriate application of ethics to genetic

database has come into question is with the Icelandic Health Sector database

proposed by deCode genetics [51, 52]. In contrast to the commercial endeav-

ours of deCode Genetics with the Icelandic Health Sector Database, the

UK’s Biobank project is a non-profit research initiative aimed at improving
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disease diagnosis, treatment and prevention in the population at large [117].

One of the key challenges faced by a data manager wanting to provide

adequate protection for a genetic database is which parts of the genetic in-

formation can they ‘safely’ modify. As we will see in Chapter 3 the most

commonly applied statistical disclosure control mechanisms involve the mod-

ification of certain values in the original data file to incorporate a notion of

uncertainty in the event where sensitive values are discovered by an intruder.

Due to the complexity and lack of total understanding of the actual under-

lying meaning of genetic sequences we advice against directly modifying

this data. Instead we advocate the modification of the supplementary infor-

mation, such as medical history and diagnosis that is stored alongside the

genetic sequencing data in the genetic data warehouse. It is also important

to note that much of this additional information is traditionally categori-

cal in nature, i.e., its values do not exhibit a natural ordering. As we will

see later, this makes the challenge of protecting such information from an

intruder all the more difficult.

1.2 Research Questions

Recent work in the area of computer security has seen a move away from tra-

ditional ‘hard’ security measures to emphasise the role trust and risk play

in cooperative relationships [74, 68]. To the best of our knowledge there

has not yet been a comprehensive analysis of the role that trust plays in a

statistical data warehouse system. Our aim is to not only examine the com-

plex trust relationships that exist between the various stakeholders in such

a system, but also model what role trust plays in successful collaboration.

As shown in Section 1.1 genetic data warehouses typically contain a lot

of supplementary data which is categorical in nature, that is, attributes

whose values exhibit no natural ordering. Traditional Statistical Disclosure

Control mechanisms are generally not very successful at dealing with this

type of data. In this thesis we examine which techniques may be applicable

for use with categorical data, and propose a privacy protection framework

aimed specifically for use with genetic statistical data warehouse systems.
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We now summarise our main research problem into the following two

research questions which we address in the remainder of the thesis.

• What role does trust play in the relationships between the stakeholders

in a genetic statistical data warehouse system and how best can it be

modelled?

• How can we successfully apply statistical disclosure control measures

to a genetic statistical data warehouse systems when a large proportion

of the data is categorical in nature?

1.3 Thesis Overview

We now outline the content of each chapter and comment on the contribution

from each.

Chapter 2 - Trust in Genetic Databases

Trust is part of the fabric of our everyday life, it is so intrinsic to our

relationship that society would not function so well without it [81]. The

area of computer security has recently experienced a shift away from more

traditional ‘hard’ security measures, such as access control, towards the

application of social control mechanisms such as trust [74]. In Chapter 2

we investigate the trust relationships that exist between the stakeholders

in a Statistical Disclosure Control setting, and present a quantifiable model

for trust. A framework is also provided to instruct data managers on how

best to foster relationships of trust amongst the system stakeholders, and

ultimately achieve the highest level of security and data quality possible.

To the best of our knowledge, this is the first time that trust has been so

extensively applied in the statistical database context.
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Chapter 3 - Comparative Study of Relevant Techniques

In this chapter we provide a comprehensive introduction to the Statisti-

cal Disclosure Control (SDC) problem. The difficult task faced by data

managers is to balance the conflicting goals of data quality and disclosure

protection. We present the ways in which this problem has traditionally

been approached and discuss why a users supplementary knowledge about

certain records contained in a statistical database poses such a challenge to

privacy protection.

Chapter 4 - Privacy Protection Framework for Genetic Databases

When a statistical database contains a large percentage of categorical at-

tributes, as with genetic databases, the application of traditional SDC meth-

ods becomes less straightforward. One of the techniques that has been suc-

cessfully applied to categorical values is the Post RAndomisation Method

(PRAM) developed by researchers at Statistics Netherlands [54]. One of

the necessary components of the technique is the development of a transi-

tion probability matrix which is then used to perturb the microdata file for

general release. In Chapter 4 we provide a Privacy Protection Framework

for genetic databases, which proposes the application a clustering technique

on the original data set to allow us to decide similarity between categorical

attribute values.

Chapter 5 - Similarity Measure for Categorical Values

By their very definition categorical attributes do not exhibit a natural or-

dering, which makes the task of perturbing these values more complex than

for numerical data. The main contributions of Chapter 5 is our similarity

measure for categorical attributes. By constructing a graph from the val-

ues in the original data set, by looking at which values in an attribute are

neighbours, we measure the relative similarity between values. We term this

similarity S-Prime similarity. One of the unique qualities of our measure is

that we are able to capture a notion of transitive similarity between values,
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which is called S-Secundum similarity. We not only look at neighbours in

the graph, but also ‘neighbours of neighbours’. We can then balance the two

types of similarity by applying a weighting to the S-Prime and S-Secundum

similarity to provide a total similarity value for each pair of attribute values.

One application of our similarity measure is that we are able to verify the

‘numeric’ behaviour of numerical attributes by seeing if values that appear

similar according to our measure are close numerically. Another potential

application of our similarity measure is that it may provide us with the

ability to order categorical attribute according to their relative similarity

values.

Chapter 6 - VICUS - A Noise Addition Technique for Categorical

Values

In Chapter 6 we present our noise addition technique for categorical values -

VICUS - from the Latin for neighbourhood. The first step of our technique

is to partition our data set according to their similarity values. We next

construct the transition probability matrices for each attribute in the data

set. By applying the transition probability matrices we perturb the original

file. We extensively evaluate the quality of our noise addition technique

both in terms of disclosure risk and data quality. We provide the ability

to balance these competing needs via several parameters when constructing

the transition probability matrices.

Chapter 7 - Conclusion

We conclude the thesis with a comprehensive evaluation of the contribution

of the thesis and present several avenues of investigation for future work.



Chapter 2

Trust in Genetic Databases

Trust knits society together, and makes it possible for people to get on with

their everyday lives. Without it, society would become impossible.

–Kieron O’Hara

As we have seen from the previous chapter, there is potential for much

benefit to be gained from the analysis of genetic information stored in large

research databases. One way in which useful information can be extracted

from such large volumes of data is via a series of statistical queries, in the

hope of revealing underlying patterns and trends amongst the population in

question. However, this type of analysis has the potential to expose private

details about an individual, thereby constituting a breach of their privacy.

Since an individual’s privacy is at stake, a relationship of trust needs to

exist between all parties involved for such a system to operate successfully.

In this chapter we investigate the importance of trust in the context of a

statistical warehouse system. We model trust and its impact on the decision

to collaborate. The issue of trust in the context of statistical databases is not

limited only to genetic information. Hence in the remainder of this chapter

we will examine trust in the context of broader applications of statistical

databases, such as statistical warehouses maintained by businesses, not only

those containing genetic information.

9
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2.1 Introduction

The past few decades have witnessed ever increasing amounts of personal

data being collected and stored by both industry and governments alike.

The potential benefits that arise from the analysis of these data range from

improved market analysis, via strategic planning, to scientific research and

development. Examples of organisational benefits achieved through the use

of such large data stores include the analysis of customer buying habits,

integration of heterogeneous databases to allow for more cohesive access to

multiple data stores, and managing customer relationships and asset costs

[60]. Governments can benefit by being able to conduct more accurate sta-

tistical analysis in order to better plan for future resource allocation and

infrastructure placement.

These huge amounts of data are typically stored in so-called data ware-

houses. Han and Kamber define a data warehouse as a centrally accessible

repository of information whose purpose is to support an organisation in

strategic decision-making by allowing for fast access to and detailed anal-

ysis of data [60]. These services can be achieved more effectively than in

traditional database systems, due to four key features [60, 64]. Firstly, data

warehouses tend to be focused on particular subjects, such as customers,

products or patients. Secondly, data is gathered and integrated from var-

ious source data repositories to ensure consistent and semantically correct

content. Thirdly, a data warehouse contains data which is time-variant,

providing a historical perspective to data stored. Finally, due to its physical

separation from operational repositories, a data warehouse is more stable

and does not suffer from many of the problems faced by traditional opera-

tional systems.

One of the important advantages of data warehouses is that they al-

low for statistical analysis to be performed efficiently on very large data

sets. On-Line Analytical Processing (OLAP) [21, 60], introduced in the

early 1990’s, is one of the statistical analysis tools used extensively with

data warehouses. Due to the typically multidimensional and hierarchical

nature of data warehouses, OLAP operations allow for the analysis of data

at varying levels of aggregation. OLAP operations, such as pivot, also allow
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for a re-orientation of the multidimensional data view [21]. In this chapter

we focus on the statistical analysis of the data in a warehouse at its lowest

level of aggregation. This view of the data is equivalent to microdata in

Statistical Database literature [125]. In this context users can only retrieve

aggregate statistics such as SUM, COUNT, MEAN and AVERAGE. While

some data warehouses are set up in such a way that their sole purpose is to

provide statistical aggregates, more often they serve several purposes, with

statistical analysis being only one of them. The aim of Statistical Disclosure

Control (SDC) is to provide the highest possible quality statistics while also

preventing the disclosure of values from individual records. The first step

in any SDC method is to disallow access to directly identifying information,

such as name and address. However, as we will see in Section 2.3, this

measure alone is not sufficient to prevent confidential individual values from

being inferred.

We now present several examples of data warehouses that can be used

for statistical analysis. Customer loyalty schemes have become popular with

both consumers and businesses alike. For a business, these schemes pro-

vide a way of extracting information about the shopping patterns of various

consumer demographic groups. Customers are offered various rewards for

shopping at particular stores, provided that they present their loyalty card

at the point of sale. In signing up for such a scheme a customer provides a

certain amount of private information (such as date of birth, address, and

ages of household members) and then agrees to have this information stored

along with details of their shopping transactions.

As another example consider electoral databases, which have become in-

creasingly important to both Australian major political parties for targeted

campaigning [118]. These data warehouses consist of a combination of Aus-

tralian Electoral Commission rolls, telephone directories and additional data

added by the party offices. Such data provide a powerful assistance to po-

litical parties wanting to decide how best to utilise limited campaign funds

to their advantage, and thereby improve the party’s election outcomes.

Increasingly, both hospitals and general practitioners are storing pa-

tients’ medical histories electronically. Medical data warehouses formed from

such data are providing an important tool in medical research. Moreover,
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the potential uses also include more diverse areas such as health admin-

istration, adverse drug reactions and drug safety [88]. As an example we

consider Australia’s controversial HealthConnect initiative [90]. The aim

of the scheme is to implement electronic health records that can be linked

and shared across various organisations. This national proposal is intended

to provide patients, health professionals and third parties with fast and

accurate access to comprehensive patient records. However, as such data

warehouses will contain personal or otherwise sensitive information about

patients, there is a potential for the invasion of the individual’s privacy. Per-

haps a more worrying aspect of this system is that it has not been clearly

defined which private sector organisations may be granted access to aggre-

gate patient records [90]. It is not difficult to imagine a scenario in which

an employer discriminates against a chronically ill person, denying them

employment, based on information they obtained while privy to sensitive

medical records. This would certainly severely erode a patient’s confidence

that their privacy will be ensured.

In general, whenever private and sensitive information is collected about

an individual, there is a potential to breach that person’s privacy. A large

proportion of the community has concerns about how their information is

to be stored and for what purposes it will be used. In 2003, the Ponemon

Institute and the CIO Institute of Carnegie Mellon University conducted a

survey on privacy and trust. Both health care providers and banks rated

highly, with around 80% of respondents trusting that their private informa-

tion would be protected [65], while grocery stores and the U.S. Department

of Homeland Security obtained the lowest confidence scores of 26% and 36%

respectively [65].

So what are the consequences of low level trust between an individual

and an end user of their data? When an individual feels that they can no

longer trust the organisation to keep their sensitive information confidential,

there are several potentially damaging outcomes. Firstly, where possible,

the individual may decide to withhold information, making it challenging

for the organisation to collect new data. Secondly, and potentially more

damaging, the individuals may choose to falsify data they are providing in

order to protect their privacy. We argue that in order to elevate the level of
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trust, security measures must be employed to facilitate collection of accurate

personal information.

Early work in the area of statistical database security focused on at-

tempts to obtain ‘perfect’ security, or no disclosure. It was quickly seen

that due to the competing needs of data quality and privacy, this goal was

unattainable [30]. Recent work in the area of computer security has seen a

shift from so-called hard security methods, such as authentication and access

control, to soft security or social control mechanisms [74]. In this current

environment there is a movement towards the analysis of trust and risk in

the field of Trust Management [68]. The main objective of this chapter is

to model trust in the context of SDC so as to better understand the impact

it has on delegation decisions. Importantly, the model we propose is quite

general and could also be applied to other contexts.

The structure of the remainder of the chapter is as follows. In the next

section we define trust and discuss its various types, as well as the difference

between trust and distrust. In the following section we briefly introduce the

statistical security problem and demonstrate the importance of trust to the

collection and management of data. More specifically, we discuss the trust

relationships that exist in this context. In the subsequent section we present

a quantifiable model of a secure statistical database system with trust as an

essential component. We then discuss some practical aspects of quantifying

components of the model and present a privacy protection framework based

on this model. We finish with a discussion of future research directions and

concluding remarks.

2.2 Trust

Trust is an intrinsic part of the human experience. Yet, for a concept so fun-

damental to our very existence, it is a mysterious beast, both challenging to

pin down and awkward to model. To demonstrate the inherent complexity

conveyed by the word trust, we look to its numerous dictionary definitions.

McKnight and Chervany [89] scoured three popular unabridged dictionaries

for a comparison in the number of definitions between trust and other sim-
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ilarly vague concepts. They found that not only did trust have more than

three times as many definitions as on average, but also it had close to as

many definitions as ‘love’ and ‘like’. This analysis conveys the richness of

meaning and intricate nature of trust.

Past work on trust has evolved from such diverse disciplines as psy-

chology, economics, sociology, and computer science. As pointed out by

McKnight and Chervany [89], trust is an elusive and difficult to define con-

cept. There is little consensus within the literature on a robust definition

of trust, which is varyingly described as a facilitator of goals [100], and a

commodity vital for cooperative transactions [27]. It is even argued that

without a willingness to make oneself vulnerable by depending on others,

without trust, we would find ourselves unable to face the complexities of the

world [81].

In order to gain a better understanding of trust we first establish the

context and the stakeholders within it. For the purpose of this paper we

define a trust relationship as an asymmetric relationship occurring between

two parties, the trustor and trustee. The trustor is the trusting party, while

the trustee is the trusted party. In effect, the trustor is placing their trust in

the trustee. It is worth noting that the trustee is not necessarily a person,

but can be a more abstract entity such as a software program [68]. In our

secure statistical data warehouse system we have three stakeholders, namely

the Data Source, Data Manager, and Data User.

The Data Source is the person, or system, providing their information

to the Data Manager. The Data Manager is responsible for the collection

of data and the creation and management of the data warehouse. We term

them ‘manager’ rather than ‘owner’ since the question of data ownership is

not always a straightforward matter. At what point when providing their

information does a Data Source relinquish ownership of their data? We

choose to err on the side of caution and not make broad assumptions about

data ownership. In Section 2.4.1, we acknowledge that a Data Source may

receive some form of payment for having provided their data to the Data

Manager. However, this may not always be the case, and a Data Source

may in fact choose to retain some form of ownership of their information.

Similarly, we choose the term Data Source instead of ‘donor’ used by some
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authors in similar contexts [75]. The Data User relies on the Data Manager

to provide high quality data on which they then perform various statistical

queries. We discuss the complex trust relationships between these various

stakeholders in more detail in Section 2.3 and Section 2.4.

To aid our discussion of the various properties and causal factors related

to trust, we give the definition of trust proposed in [68]. Analysing this

definition will provide insight into the qualities that separate trust from

other similar concepts, such as cooperation.

Definition 1 (Trust) Trust is the extent to which a given party

is willing to depend on something or somebody in a given sit-

uation with a feeling of relative security, even though negative

consequences are possible.

Just like several other papers on trust [47, 81, 104], we first discuss what

trust is not before considering what actually constitutes trust.

2.2.1 Related Concepts

An obvious beneficial outcome of a trusting relationship is that it encour-

ages cooperation between the parties involved. This symbiosis can make it

difficult to separate the concepts of trust and cooperation, and indeed in

some early literature, the two terms were often confused [104]. An impor-

tant distinction between trust and cooperation is that although trust can

lead to more cooperation between parties, cooperation can still occur in the

absence of trust [47]. As Mayer et al. [104, p.713] state, “You can cooper-

ate with someone who you don’t really trust”. Indeed, cooperation can be

fostered via other forces, such as coercion, contracts and external control

mechanisms [47, 104]. An example of coercion to encourage compliance and

cooperation would be a dictator state, whereby the powerful government

threaten citizens into submission. However, Gambetta is quick to point out

that coercion cannot be seen as an alternative to trust; on the contrary, in

extreme cases it can in fact reduce the level of mutual trust and give rise to

resentment [47]. Contracts and other forms of external control mechanisms
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can force cooperation via the threat of punishment if the trustee defaults

in some way [104]. Nonetheless, it is widely accepted that cooperation is

achieved more efficiently through trust than by other means [47].

Like cooperation, confidence is often confused for trust, and the distinc-

tion between the two is not always clearly defined. For instance, when we

leave the house each morning without taking a weapon with us, is this trust,

or simply confidence [81]? Luhmann suggests that if we do not consider the

alternatives, it is a situation of confidence. However, if we weigh up the con-

sequent risk of not carrying a gun and still choose to leave home unarmed,

then we are in a situation of trust. Both situations can lead to disappoint-

ment when our expectations are not met, but with trust we have considered

the alternatives and still perceive the probability of a positive outcome to

outweigh that of a negative one. Both alternatives can become routine in

our everyday lives, but the distinction “depends on perception and attribu-

tion” [81, p.97]. If we are mugged after leaving the house unarmed, in a

situation of trust, we will regret the decision. But if the same event occurs

under confidence, we will be disappointed, but not have the same feeling of

remorse [86]. Marsh equates absolute or ‘blind’ trust to confidence, point-

ing out that when no thought or consideration is involved then we are not

talking about trust at all [86].

2.2.2 Trust Considered

Having examined what trust is not, we now examine some of the concepts

that help us to define trust. The notion of dependence is at the heart of Def-

inition 1, and is reflected in the “willing to depend” component. The need to

delegate a task to another person is a necessary condition for trust [68, 29].

By trusting another, we are delegating an important task which we would

otherwise be unable to complete ourselves, or at least not as easily. Closely

related to the notion of dependence is reciprocity as stated by Mui, Mo-

htashemi and Halberstadt [96]. Reciprocity is defined as a mutual exchange

of deeds, both positive and negative in outcome. Mui et al. argue that

reciprocative actions help a person to acquire a reputation [96]. Reciprocity

is connected to reputation and trust via a cyclic reinforcing relationship;
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the more I trust you, the more likely I am to reciprocate positively to your

actions, which leads to an increase in your reputation, and subsequently, the

higher your reputation, the more likely I am to trust you [96].

Reputation and credentials are also closely linked to trust, particularly

in relation to open distributed systems such as the Internet [1, 68]. These

concepts embody the “feeling of relative security” component of Definition

1. A reputation allows us to infer something about future behaviour based

on an informed observation of past actions [1]. Reputation systems allow

for a reputation to be accrued and assessed on a global scale without the

usual face to face personal interactions [68]. Reputation information can

be gathered from other people who have had interactions with the trustee,

and the difference between reputation and trust is well illustrated by the

following two statements from [68, p.104]:

1. “I trust you because of your good reputation”

2. “I trust you despite your bad reputation.”

The first statement shows that a positive reputation can lead to trust, while

the second statement reflects how personal relationships and experiences

can have a larger bearing on trust than reputation alone. However, when

reputation includes personal experience as proposed in [1], the distinction

between trust and reputation becomes blurred.

Perhaps the most discussed component of any trust definition is the

notion of risk, embodied in our trust definition as the possibility of “negative

consequences”. Risk is pivotal to our earlier discussion of the difference

between trust and confidence and indeed, as Luhmann points out, trust

“presupposes a situation of risk” [81, p.97] and trust only becomes relevant

and necessary when there is some level of risk involved. In their model

of trust Mayer et al. [104] make a clear distinction between trust, risk

and the outcome of trust, which they refer to as risk taking in relationship

(RTR). They distinguish between the intent, or willingness to assume risk,

and the trusting behaviour of actually assuming the risk, clearly separating

trust from its outcomes [104]. RTR is a function of both trust and the

level of perceived risk, which deals with risks outside of considerations of
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the direct relationship with the trustee. RTR can alternatively be seen as

“the behavioural manifestation of trust” [104, p.726]. Marsh [86] includes

the perceived risk in a given situation in his calculation of a cooperation

threshold, which is the amount that the trust in the given situation has to

exceed for cooperation to occur. So again, while risk is not directly part of

any trust definition, it is strongly related to the likelihood of cooperation

occurring between the trusting parties.

We note that context is very important to any definition of trust, as

shown by the excerpt “in a given situation” from Definition 1. In his for-

malism of trust for artificial agent systems, Marsh discusses the importance

of context to trust in a given situation, and particularly the utility and im-

portance of the outcomes of the trusting relationship [86]. His definition

of utility is based on economic rationalism and refers to a measure of the

benefit to be gained for the trustor in a particular context. Importantly, this

value can be negative, and must consider all possible outcomes for the sit-

uation, providing an accepted and objective measure of the utility for that

particular situation. The importance of the situation is a subjective and

trustor centric measure of the positive benefits to be gained in the current

context [86].

Another quality of trust relationships is that they are fluid or dynamic,

not only depending on context, but also changing over time. Marsh incorpo-

rates a finite memory of past experiences into his trusting agents, allowing

them to influence the current level of trust [86]. Trust dynamics are exam-

ined in more detail by Falcone and Castelfranchi [41, 42]. Several ways in

which trust can influence future outcomes are presented, and it is argued

that trust can act both as a self-fulfilling prophesy or self-defeating strategy,

thus modifying the outcome in both cases. Trust creates reciprocal trust,

and distrust elicits distrust. Diffuse trust spreads trust, that is, creates a

trusting atmosphere.

Before looking at different types of trust, we briefly outline work done on

defining trustee characteristics. McKnight and Chervany [89] have compared

cross-disciplinary definitions of trust and extracted four high-level trustee

or trust referent characteristics of the trustee: benevolence, integrity, com-

petence, and predictability. A benevolent party acts in a caring way in order
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to achieve the greater good, rather than acting opportunistically. Integrity

refers to acting truthfully, and acting in good faith. Competence is the abil-

ity or power to achieve what is needed. Predictability refers to a consistency

of trustee actions in a given situation, be they of good or bad consequence.

Mayer et al. [104] defined a similar set of trustee characteristics which also

includes benevolence and integrity; however, they replace competence with

the similarly defined ability property. The interrelationship of these trustee

characteristics creates a function by which the trust for a trustee can be

determined, and importantly a perceived problem with any of the factors

can lead to an undermining of trust [104].

Castelfranchi and Falcone [20] define seven basic trust beliefs that a

trustor must have towards the trustee in order for them to delegate a task

they are trying to complete. Competence belief equates to a positive evalua-

tion of the trustee. Disposition belief relates to the trustee’s willingness and

predictability. Dependence belief relies on the trustor’s dependence on the

trustee on the task being performed for them. Fulfilment belief relates to

trust in the goal itself being performed. Willingness belief models the intent

of the trustee to perform the task for the trustor. Persistence belief relates

to the stability of these intentions, while Self-confidence belief models the

trustee’s own self-belief in their ability to perform the delegated task. As the

authors state, “It is difficult to trust someone who does not trust himself”

[20, p.51].

Having discussed some of the aspects that contribute to what constitutes

trust; we now focus on some of the different types of trust that can exist in

a trusting relationship between a trustor and trustee.

2.2.3 Types of Trust

In his influential work on a formalisation for trust, Marsh distinguishes be-

tween three different types of trust: basic, general and situational [86]. Basic

trust is an agent’s general trusting disposition, not related to any specific

person or situation, which can change over time depending on the outcomes

of trusting encounters. In general, good experiences will increase our ba-

sic trust, and bad experiences will decrease it. General trust is trust in a
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specific other, irrespective of the situation. Finally, as the name suggests,

situational trust is trust in a specific other, in a given situation.

(Trust in the
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Behavior
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Related

Intentions
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Figure 2.1: Interdisciplinary model of trust constructs (courtesy of McK-
night and Chervany [89]).

In developing a cross-disciplinary trust typology, McKnight and Cher-

vany [89] created a trust model in which trust constructs are grouped into

three high-level trust types: Dispositional, Institutional and Interpersonal.

Dispositional trust can be seen as an inclination to trust others in general,

rather than specific individuals as in interpersonal trust. On the other hand,

institutional trust is based on structures and situations rather than individ-

uals [89]. Interpersonal trust is further broken down into Trusting Beliefs,

Trusting Intentions and Trust-Related Behaviour. The relationships be-

tween these constructs are shown in Figure 2.1. Trusting beliefs form the

basis for both trusting intentions and the resulting trust-related behaviour,

and all three are person rather than context specific.

Having discussed various important aspects of trust and its importance in

forming collaborative relationships, we now briefly analyse the fundamental

differences between trust and distrust. While in the past the latter was often

just dismissed as the opposite end of trust, there is a growing belief that

trust and distrust are not only different constructs, but that they can indeed

both exist at the same time [76].
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2.2.4 Trust and Distrust

Just as trust is fundamental to the formation of cooperative endeavours,

distrust can just as quickly break down relationships and stall collabora-

tion. Distrust has often been described as the opposite end to trust along

a continuum, where trust values fall in the range [-1,1) with total distrust

being -1, no trust being 0 and close to 1 being high trust [86]. Note that the

range does not include +1, as it is assumed that total trust is not possible.

This definition precludes the idea that we can have both a high level of trust

and distrust co-existing. However, it is easy to find a counter-example, for

instance we can imagine allies in war simultaneously trusting and distrusting

each other [89].

Marsh and Dibben [85] perform a detailed analysis of various aspects of

trust and distrust and come up with four separate terms: Trust, Untrust,

Distrust and Mistrust. They describe trust in a similar way to Definition

1, namely as positive expectations about the trustee providing a positive

outcome for the trustor. By comparison, distrust is a negative measure of

how much the trustee is actively working against the trustor to prevent the

completion of the delegated task [85]. Distrust increases the complexity of

a situation due to the requirement for verification or evidence of how the

trustee is performing [85]. Trust is placed in the trustee only when the level

of trust is higher than some cooperation threshold [86]. This implies that

there is a gap between trust and distrust, termed untrust, which describes

how little the trustee is trusted [85]. That is the level of trust which is

below the cooperation threshold and above zero. A distinction between

misplaced trust and distrust is also conjectured. What Marsh and Dibben

term mistrust results from a default of trust in a given situation [85]. An

example of mistrust could be where a Data Source trusts a Data Manager

to properly manage their data and a series of unforseen events results in

some data loss. In this situation the trust was misplaced, but this does not

necessarily lead to a change in the level of trust between the two parties.

The more accepted view is that trust and distrust are opposites of one

another, yet also separate constructs [76, 89]. Luhmann describes distrust

as a functional equivalent of trust, yet not its equal [80]. Although both
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are a means for reducing complexity in society, distrust can only do so via

other means, such as placing controls over the trustee. Lewicki et al. [76]

have outlined a theory of trust whereby high trust and distrust can coexist in

complex relationships. However, as pointed out by McKnight and Chervany,

the simultaneous existence of high trust and high distrust only makes sense

when the construct is non-situation specific [89]. If dealing with a specific

context, it no longer makes sense to talk about concurrently high trust and

high distrust. The same applies for the opposite end of the spectrum, when

we have coexisting low trust and low distrust [89].

2.2.5 Discussion

Now armed with some knowledge of the complex role that trust plays in

cooperative relationships, we are ready to develop a model of how these

relationships are formed in the context of statistical data warehouse sys-

tems. One problem faced when developing such a model is how to handle

the conflicting needs of the system stakeholders. For instance, a consumer

providing their data to a Data Manager wants to ensure that their sensitive

information is kept private. On the other hand, an end user has a goal of

obtaining the highest quality statistics from their statistical analysis. It is

important to note that these two goals may sometimes be in conflict. When

a security control measure is applied to the system, the end user’s level

of trust in the Data Manager’s ability to preserve the quality of statistics

will be generally reduced, while conversely, the consumer’s trust that their

privacy will be protected will increase.

Thus, Statistical Disclosure Control (SDC) techniques contribute to the

trust that the Data Source has in the Data Manager. This will help to

ensure that individuals are still willing to participate and provide their in-

formation. Perhaps more importantly, it will encourage consumers to pro-

vide correct information. In the next section we discuss the complexities

faced by Data Managers when collecting data. We also introduce some of

the security techniques that are currently used in statistical data warehouse

systems. Additionally, we examine the various relationships of trust that

exist between the system stakeholders.
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2.3 Statistical Disclosure Control

In this section we introduce the Statistical Disclosure Control (SDC) prob-

lem as it relates to statistical data warehouse systems. This dichotomy be-

tween protecting the privacy of individuals and ensuring the highest quality

statistics has been traditionally approached via two main methods, namely

query restriction and noise addition. We examine both of these methods

and explain some of the security threats and information loss measures. We

discuss how data is collected in a data warehouse and illustrate some of the

complexities and difficulties faced by Data Managers attempting to obtain

quality data. The purpose of this section is not to provide a comprehensive

literature review of SDC, but rather to provide the reader with a concise

introduction to the basic concepts so as to clearly articulate the context in

which we are examining trust relationship. Chapter 3 will give a more formal

overview of the relevant concepts and techniques in the area of Statistical

Database Security.

2.3.1 Data Collection and Management

The way in which data in the data warehouse is collected can impact greatly

on the accuracy and completeness of the information stored; without quality

data it is impossible to extract quality statistics. Methods of data collection

include surveys conducted by census bureaus, medical records collected by

medical practitioners, surveys conducted by National Statistics Agencies,

and market analysis data accumulated through sales information. In terms

of potential loss of data quality, the method most worthy of discussion is

the collection of surveys. We argue that when a person has a low level of

trust in an organisation they are likely to provide false information. In fact,

Australian survey results indicate that only 17% of respondents believe that

businesses selling over the Internet are trustworthy [57, p.18]. On the other

hand, when individuals stand to gain nothing from participating and face no

possible punishment, they are likely not to provide their data at all. Indeed,

the Australian Community Attitudes to Privacy surveys conducted in 2001,

2004 and 2007 indicate that the number of individuals leaving information

off forms is increasing [57, p.26]. By contrast, with the collection of medical



2.3. Statistical Disclosure Control 24

information people are much less likely to lie, since they have a higher level

of trust towards medical practitioners (91% of respondents in [57, p.18]),

and since it is in their best interests to provide accurate data.

So what are the potential consequences for Data Managers when their

Data Source has a low level of trust or little to gain from providing their data

for future statistical analysis? Having a reduced number of people willing

to participate and provide information is a problem, yet a potentially more

damaging outcome for Data Managers is when individuals provide false or

misleading information to data collectors, which is likely to occur when they

do not have the option to withhold their information. If they feel that their

privacy cannot be guaranteed by the Data Manager, then they in a sense

perform their own data perturbation (see Section 2.3.2) on the information

prior to collection. The fallout of such behaviour is that the correctness

of collected statistics cannot be ensured. Clearly, it is beneficial for Data

Managers to ensure that correct privacy protection measures are employed

so as to not receive bad publicity and in turn increase the willingness of the

public to participate in future data collection [124].

There are further reasons why Data Managers should consider using

SDC techniques to help protect their data warehouses. Firstly, there may

be a legal requirement to collect data so as to adhere to the current laws

of the country in which the data is being collected and/or distributed [124].

This generally involves employing SDC techniques to ensure the privacy of

individuals, and failure to comply could result in legal actions. Another

valid, yet perhaps less tangible requirement for Data Managers to consider

is their moral obligation to ensure the individuals’ privacy. In some cases,

such as with statistical agencies, this requirement is even incorporated into

their professional codes of conduct [124].

From this analysis it would seem clear that the SDC problem needs

to be addressed by the Data Manager. In the statistical data warehouse

system they sit between the Data Source and Data User, and are faced with

the conflicting needs of both stakeholders. We now define this problem in

more detail and provide examples of how a solution to it is traditionally

approached.
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2.3.2 SDC Problem

The type of system we consider is a data warehouse that only allows for

statistical queries to be performed on the data. There are two key conflicting

goals in such a system. Firstly, the Data Manager wants to ensure that

sensitive information relating to individual records in the data warehouse

is not disclosed by answering queries. Secondly, the Data Manager aims to

achieve that the highest accuracy of released statistics are provided to the

Data User. These goals are by their very nature in conflict, a higher level of

security (privacy) implies a lower quality/amount of released statistics and

vice versa. The real problem faced by the Data Manager is how to find the

best balance between these conflicting goals. This is known in literature as

the Statistical Security problem or the Statistical Disclosure Control (SDC)

problem. Comprehensive overviews of this topic can be found in Chapter 3,

or alternatively [2, 13, 9, 124, 125].

Staff No. Name Date of Birth Sex Position Start Date Salary

103749 James 21/06/71 F Team Leader 23/06/99 64500

853445 Brown 23/05/64 F Branch Manager 12/04/03 105000

332480 Brown 6/12/59 M Admin. Assist. 9/01/79 49249

142313 Black 30/11/84 M Programmer 12/03/05 43060

578345 Jones 28/02/65 M Team Leader 30/01/03 70500

126950 Chen 16/07/64 F Admin. Assist. 24/7/01 48750

476633 Smith 10/11/72 M Technical Officer 9/01/03 50240

125342 Zhong 25/04/83 F Database Admin. 26/11/03 49900

342523 McDonnall 5/05/79 F Executive Officer 12/09/01 60900

451413 Liang 21/10/65 M Programmer 5/06/99 47000

Table 2.1: An abstract model of a data warehouse

In order to explain these concepts in more detail, we present a model

of a statistical data warehouse in Table 2.1. In this model each row repre-

sents an employee’s employment history file and each column describes an

attribute (a property). For example, the first column represents a unique

employee identifier or staff number (‘Staff No’), and the second column is

the employee’s surname (‘Name’). This is followed by the employee’s date of

birth (‘Date of Birth’) and gender (‘Sex ’). We then have several attributes

related to the employee’s work history and employment conditions, the first

of which is their current job description (‘Position’), the date that they

started working for the company (‘Start Date’), and finally, the employee’s
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current annual salary (‘Salary ’). It is worth noting that this microdata file

is only designed as an abstract example, and does not represent a real em-

ployee database. In reality, such data warehouse systems would have a much

larger number of attributes and many thousands, even millions, of individual

records.

The attributes in a statistical data warehouse can be further categorized

into two main groups, confidential (or sensitive) and non-confidential (or

identifiers). In our sample database in Table 2.1 examples of non-confidential

attributes would be Name, Sex and arguably Date of Birth. An example

of a sensitive attribute would be Salary, since historically people have al-

ways been reticent to disclose their income. The 2007 Community Attitudes

Towards Privacy survey [57, p.23] has income details second in the list of

information people are most reluctant to provide, after financial details. As

many countries, including Australia, move away from standardised salary

awards to a system of negotiated income packages it can be argued that

salary data is becoming even more sensitive, since it may upset the relation-

ship among work colleagues.

To ensure the integrity of the data warehouse system, it should be im-

possible for users to infer confidential values from any sequence of aggregate

values. A situation where a user is able to determine the individual val-

ues is termed a database compromise or statistical disclosure. A user who,

either deliberately or accidentally, is able to disclose information about an

individual record is called an intruder, or snooper. An obvious first step in

protecting the statistical data warehouse from such a snooper would be to

remove all direct identifiers from the database. However, this alone is not

enough to anonymise the data [125], hence the statistical security problem

is typically dealt with in one of the following two ways: restricting queries

that users can pose to the system or adding noise to the data. Query re-

striction methods prevent compromise from occurring, while when noise

addition techniques are applied compromise is still possible, although the

intruder has a degree of uncertainty about the exact values. In either case it

is important to find the right balance between security and usability of the

database where the latter is measured by the number and quality of released

statistics.
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2.3.3 Trust Relationships in the SDC Context

Before presenting our trust model, we first examine the trust relationships

that exist between the three system stakeholders of our statistical data ware-

house system: Data Source, Data Manager and Data User. Recall that the

Data Source is the entity (individual, organisation, etc.) that is providing

information to the system. The Data Manager is responsible for the collec-

tion, management and distribution of the data and is assigned the task of

ensuring their accuracy and security. The Data User is a researcher or devel-

oper who performs statistical queries on the data in order to gain valuable

information. It is important to note that a Data User may have hidden ma-

licious intention to learn sensitive information about particular individuals

in the data warehouse.

Data Source and Data Manager

The relationship between the Data Source and Data Manager is perhaps the

most public and yet most complex of all the trust relationships. The Data

Source trusts that the Data Manager will not misuse their data, that is, they

will only use it for the purposes previously agreed upon and seek permission

before using it for anything else. They also trust that the Data Manager

will not on-sell their information to a third party without their explicit

consent. In a 2007 survey conducted for the Australian Federal Privacy

Commissioner [57, p.35], 94% of participants believed that a business using

their information for another purpose was a misuse of their information.

From the perspective of the Data Source, this invasion of privacy could easily

lead to an erosion of trust in the Data Manager. The following example

illustrates a breach of trust between a Data Source and Data Manager.

Example 1. In late 2003 the American airline JetBlue admit-

ted to handing over the travel records of five million customers

to Torch Concepts, a private US Department of Defence contrac-

tor. The information was then combined with additional passen-

ger demographic data obtained from another company, Acxiom,

and used to develop passenger profiles in order to detect terror-
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ist suspects. JetBlue was in direct violation of their own online

privacy policy by selling customer data to a third party [4].

In addition to trusting that the Data Manager will only use data for

previously agreed upon purposes, the Data Source also trusts that the Data

Manager will properly manage their data and keep sensitive information

private. The recent spate of high profile security breaches has increased

public awareness of this issue as shown in Example 2.

Example 2. TJX Companies Incorporated, a large US fashion

retailer ranked at 133rd in the fortune 500 list [113], admitted

to having its computer systems periodically hacked between July

2005 and January 2007. In the company’s Security Exchange

Commission (SEC) filing, it admitted that 45.7 million credit

and debit cards were effected, as well as a further 455,000 mer-

chandise return records. These contain, among other details, the

driver’s licence and social security numbers of customers [17].

There are now several lawsuits pending against the company from

various financial institutions wanting to recoup losses resulting

from the frauds that followed [17].

In the reverse trust relationship between the Data Source and Data Man-

ager, the Data Manager trusts that the Data Source will provide them with

correct and accurate data.

Data Manager and Data User

We now examine the interaction between the Data Manager and Data User.

The Data Manager trusts that the Data User will not misuse the data pro-

vided to them. One obvious way in which this type of trust could be eroded

is where the Data User agrees with the Data Manager to only use the pro-

vided data for specific purposes and then uses it in another way. Example

1 above illustrates this type of breach. The Data User is also trusted by

the Data Manager to keep private information confidential. Since the Data
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Manager should have taken measures to protect the privacy of individuals in

the data warehouse, they are in effect trusting that the Data User will not

try to subvert these measures. For instance if a National Statistics Agency

were to provide a researcher with data, they trust that the researcher will

not make an attempt to identify sensitive information from any individual

records.

In the converse relationship, the Data User trusts that the Data Manager

will provide them with high quality data. This is of particular relevance

when dealing with statistical data warehouses since many of the protection

mechanisms can have an adverse effect on data quality. As was discussed in

Section 2.3.2, restriction methods reduce the amount of statistics released,

while noise addition methods reduce the accuracy of the statistics. If a high

level of trust is maintained between the Data Manager and Data User, this

would reduce the reliance on SDC methods and consequently preserve the

data quality.

Data Source and Data User

The final grouping of trust relationships is between the Data Source and

Data User. Although they do not have a direct interaction, we still argue

that there exists a relationship of trust between these two parties. The

Data User trusts that the Data Source will provide accurate data, albeit

not directly. Conversely, the Data Source trusts that the Data User will not

misuse their data, nor compromise the privacy of any individual’s record in

the data warehouse. An example of where this type of trust can occur is

when a cancer patient has direct trust in a medical researcher attempting

to find a cancer gene for their type of cancer. The nature of the delegation

task itself impacts on the willingness of the Data Source to participate and

place their trust in the Data User.

It is important to point out that although we talk about the Data Man-

ager and Data User as separate entities, both of these roles can in fact

be filled by the same entity. In the next section we formalise these trust

relationships and introduce our trust model for statistical data warehouse

systems.
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2.4 Model of Trust for SDC

To gain insight into the interactions between the stakeholders we first model

the trust relationships using a software engineering tool designed for early

stage system development. This model illustrates the importance of trust in

a well managed statistical data warehouse. The question we consider is how

a Data Manager decides when the system is operating effectively. We provide

a trust model designed to assist Data Managers in evaluating the influence

of trust in the system, so as to better recognise potential problems. We

advocate that the Data Manager then use a privacy protection framework

to ensure that the needs of all stakeholders are adequately managed.

2.4.1 Modelling Trust Relationships

We model the trust relationships of the various system stakeholders using

components of the so-called i* framework, which was developed as a re-

quirements engineering tool for early stage system development [132]. It

was designed to provide a higher level of modelling than previous tech-

niques such as object-oriented analysis or data flow diagramming [131]. The

framework allows for qualitative reasoning about opportunities and vulner-

abilities of system stakeholders. To date it has mostly been used in the

context of requirements engineering, business processing re-engineering and

software processes [131]. However, it has also been applied to the modelling

of the role trust plays in system design, highlighting areas where an erosion

of trust may develop [131]. The framework visualises the dependencies and

specific trust relationships that exist between the system stakeholders. This

provides the system developers with a snapshot of how the system should

ideally function, and equips them with an understanding of the effects of a

breakdown in trust.

In this chapter we use a subset of the i* framework as presented by Yu

and Liu [131]. This subset is sufficient to model the intentional dependencies

within a network of system stakeholders (actors), via a Strategic Dependency

(SD) model. Figure 2.2 shows a Strategic Dependency model for a statistical

data warehouse system, with the three system stakeholders modelled as
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Figure 2.2: Strategic Dependency (SD) Model of a Statistical Data Ware-
house System

actors. As discussed in Subsection 2.2.2, dependence and delegation are

at the heart of the definition of trust, and with the SD model we are able

to capture four separate types of dependencies: task dependency, resource

dependency, goal dependency and softgoal dependency.

A task dependency describes the situation where one actor depends on

another to perform an activity, independent of their motivation for having

the task performed [131]. In Figure 2.2 we can see that the Data User

depends on the Data Manager to perform a series of database queries. This
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would occur in a situation where the Data User is not able to have access to

the data warehouse directly, but must rely on the Data Manager to perform

specific queries and return the results.

In a resource dependency, one actor is depending on another to provide

them with a particular resource in an unproblematic way [131]. We can see

in Figure 2.2 that the Data Source relies on the Data Manager for payment,

while the Data Manager relies on the Data Source for data. For example, a

shopper using a store loyalty card receives some remuneration for allowing

their shopping transactions to be collated. The store relies on the shop-

per to provide raw data for the data warehouse system. Additionally, the

Data Manager obtains payment for providing the Data User with statistical

data, an example of which would be the store providing data to a market

researcher.

A goal dependency allows us to model one actor depending on another to

achieve some goal [131]. The dependee in this scenario is free to choose how

this goal is met, and it is decided in advance how the completion of the goal

will be verified. Note that we use the term “dependee” to denote the person

being depended on and “dependor” for the person who is depending on the

dependee, similarly to trustee and trustor. Further freedom is allowed with

a softgoal dependency since there is no specific a priori principle for what

constitutes meeting the goal, but rather the dependor and dependee must

decide on an individual basis if the goal has been sufficiently accomplished

[131]. We use this type of dependency to model trust relationships because

it embodies the notion of risk, cooperation and dependence. For instance,

in Figure 2.2 the Data Source trusts the Data Manager to keep their sen-

sitive information private, while there is no clear-cut standard for how this

confidentiality will be achieved. Modelling trust as an i* softgoal was first

presented by [131].

Figure 2.2 incorporates all of the trust relationships that were discussed

in Section 2.3.3. We can use this figure to reason about how low levels

of trust greatly impact on the management of the secure statistical data

warehouse system. For instance, if a Data Source were to lose trust in

the Data Manager, they may then decide to falsify their data in any future

dealings with them. The Data Manager may not become immediately aware
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of the change to data quality; however the Data User may notice a drop in

quality of the new data they receive. This would lead to a reduction in the

level of trust between the Data User and Data Manager. It is not difficult

to imagine the cyclic (feedback) affect of such drops in trust levels between

the system stakeholders. The ultimate outcome could easily be that the

Data User no longer relies on the Data Manager to provide them with data,

causing loss of business to the Data Manager.

It is clear from this discussion that the various trust relationships that

exist between the three system stakeholders are vital to the correct oper-

ation of any statistical data warehouse system. When there has been a

breakdown of trust between two parties it is essential that some mechanism

be employed to ensure that goals are still achieved and the system runs

smoothly. We now present a trust model for a statistical data warehouse

system that incorporates all of the issues we have discussed thus far, after

a brief discussion of existing trust models.

2.4.2 Previous Trust Models

In this section we briefly mention two important trust models that have

appeared in the literature in the last fifteen years, firstly a quantitative

formalism devised by Marsh [86] and secondly the more qualitative model

proposed by Mayer, David and Schoorman [104]. We consider these two

models in combination and build upon them to capture issues appearing in

our statistical data warehouse system. Additionally, our model is applicable

to other business scenarios.

Marsh 1994

Marsh [86] builds upon his various types of trust (basic, general and sit-

uational) as well as his view on trust versus distrust (see Section 2.2) to

develop a formula for a cooperation threshold, a value that must be reached

in order for a trust relationship to proceed. Situational trust is the trustor’s

level of trust towards the trustee in a particular situation, based on their

general trust in the trustee and the importance and utility of the situa-



2.4. Model of Trust for SDC 34

tion. Additionally, the cooperation threshold is a function of the perceived

risk and importance of the situation divided by the competence and general

trust of the trustor towards the trustee. When the level of situational trust

is above the cooperation threshold, it is deemed that the trust delegation

will proceed.

The functions for calculating these measures are now outlined as they

are in Marsh [86]. Trust by one agent in another for a particular situation

is calculated as follows:

Tx(y, α) = Ux(α)× Ix(α) × T̂x(y)

where

x - the trustor

y - the trustee

α - the situation

Ux(α) - the utility that x gains from the situation α, in the range [-1,+1]

Ix(α) - the importance of the situation α to trustor x, in the range [0,+1]

T̂x(y) - an estimate of the general trust by trustor x towards trustee y,

in the range [-1,+1).

For cooperation to occur, the following relationship must exist

Tx(y, α) > CTx(α)⇒WC(x, y, α)

where

Tx(y, α) - trust of x in y for situation α, in the range [-1,+1)

CTx(α) - cooperation threshold (defined below)

WC(x, y, α) - cooperation will occur between x and y in situation α.

The cooperation threshold is defined as follows:

CTx(α) =
PRx(α) × Ix(α)i

PCx(y, α) + T̂x(y)
where

T̂x(y) - estimate of the general trust by trustor x towards trustee y,

in the range [-1,+1)

PRx(α) - perceived risk by the trustor x in the given situation α

PCx(y, α) - perceived competence by trustor x in trustee y in situation
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α

Ix(α) - the importance of the situation α to trustor x, in the range [0,+1]

i - indicates whether the cooperation threshold increases or decreases

with importance and can assume a value of 1 or -1.

Such a quantifiable measure is of a great benefit in the analysis of trust

relationships within a statistical data warehouse system. However, there

are some shortcomings of this measure, as outlined by Marsh himself [86],

regarding the inclusion of trust itself in the cooperation threshold formula,

which allows the threshold to take on unreasonably high values, including

infinity.

Mayer, Davis & Schoorman 1995

Mayer et al. [104] model trust as a function of the trustor’s propensity to

trust and the trustee’s perceived trustworthiness, which is in itself made up

of their ability, benevolence and integrity. Another feature of the model is

what the authors term ‘Risk Taking in Relationship’ (RTR), whereby they

distinguish between the willingness to assume risk and the actual outcome

of the trusting relationship. If the level of trust in the trustee is above the

level of perceived risk in the situation the trustor will engage in the RTR.

The outcomes of this RTR produce a feedback loop to update the trustee’s

perceived trustworthiness. A drawback of this model is that there is no

clearly defined quantitative measure of any of the elements of the model.

2.4.3 Trust Relationships Re-examined

To better understand how the various elements of a trust relationship in-

fluence the delegation decision, we first examine a motivating example of

a fictitious Data Source who must choose whether or not to provide her

information to a Data Manager.

Motivating Example. Ann receives a letter requesting her par-

ticipation in a periodic survey conducted by a National Statistics

Agency. Ann knows that her curious neighbour, Bob, works for
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this agency and feels uncomfortable since she suspects that her

neighbour may get access to any information she provides. Ann

has a mild disability which she would not normally disclose to

people outside of her close family. Feeling concerned about her

privacy and not trusting in the agency’s ability to manage her

data properly, Ann decides to ignore the request. Several weeks

later she receives another letter from the agency. This time they

threaten large fines for non-compliance to their request. Against

her better judgement, Ann finally decides to cooperate with the

survey since she is not willing to risk the negative consequences

of not doing so.

The above example illustrates how even when a relatively low level of

trust exists, other factors can contribute towards delegation occurring. In

particular, we perceive that a trustor must consider the possible positive and

negative consequences of collaborating and not collaborating. The follow-

ing scenarios will help to further exemplify the considerations faced by the

stakeholders in a statistical data warehouse system, as outlined in Figure 2.2.

Data Source and Data Manager

The Data Source receives some form of payment for providing their data

to the Data Manager, which can be seen as a positive consequence of their

collaboration. If they decide not to collaborate, they can also benefit by

having their privacy preserved at its current level. However, there are also

potential pitfalls when the Data Source chooses not to collaborate with

the Data Manager. One example is being unable to access certain services

because they do not provide all of the details required. They could also face

sanctions or even fines when they refuse to cooperate. Negative consequences

can also arise from collaboration. This happens for instance, if the Data

Manager is not able to correctly manage the Data Source’s data, uses it for

another purpose, or is not able to adequately protect their privacy. In these

circumstances, the Data Source may suffer not only a loss of privacy, but

also faces having incorrect information about them stored.
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Data Manager and Data Source

In the reverse relationship between the Data Manager and Data Source a

successful collaboration allows the Data Manager to obtain quality up-to-

date data. A negative outcome of the same collaboration could be that they

receive poor quality data which may affect their long-term relation with

business partners (Data Users). If the Data Manager decides not to collabo-

rate with a particular Data Source they are able to ensure that the quality of

their data remains static. The downside of non-collaboration would be that

they are unable to obtain new data and risk their data becoming worthless

because it is no longer current.

Data Manager and Data User

The Data Manager could expect to receive some form of payment in the

event of a successful collaboration with a Data User. Yet they also risk the

data being misused by the Data User, for instance by on selling the data to a

third party or using the data for another purpose. In the event that the Data

Manager does not collaborate, they can still benefit by being able to ensure

the privacy of those whose data is stored in the warehouse, and could also

benefit through an increased reputation since they have been discerning in

their choice of customers. A clear negative outcome from not collaborating

is a loss of income which could endanger their business.

Data User and Data Manager

When a Data User collaborates with a Data Manager they might expect

to receive high quality statistical data. On the other hand there is the

potential to obtain poor quality statistics from an unsuccessful collaboration.

Clearly if the collaboration does not occur, the Data User is unable to obtain

new statistics and further their work, which would reduce future outcomes

obtained through statistical analysis. In this scenario there is no obvious

benefit for the Data User if they choose not to delegate to the Data Manager.
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Data Source and Data User

Since there is no direct collaboration between the Data Source and Data

User, we do not consider the benefits and risks of such cooperation. We

note however that a relationship of trust still exists between these parties.

We are now ready to introduce our model of trust in the SDC context.

The model quantifies the key collaboration elements including trust, as well

as positive and negative consequences of delegation and non-delegation. All

of these elements are used to calculate the Cooperation Function, which is

then compared to a user defined Cooperation Threshold. The delegation

occurs only if the Cooperation Function reaches or exceeds the threshold.

2.4.4 Our Model

Our trust model in Figure 2.3 incorporates the spirit of Trust Definition 1

and builds upon several existing models of trust in the literature, namely

that of Mayer et al. [104], Marsh [86] mentioned in Section 2.4.2 and McK-

night and Chervany [89] discussed in Section 2.2.3.

Figure 2.3 represents the Trust in a Given Situation as a function of

the Trustee’s Reputation, the Trustor’s Propensity to Trust, the Trustor’s

Propensity to Distrust and the Context in a Given Situation. This resultant

trust is measured against the Perceived Risks & Benefits via a Cooperation

Function (F) to decide if the trust delegation will occur. The Outcome

of this collaboration, either negative or positive, is then used to update

the constructs on the left-hand side of the model. We now examine each

individual component of the model in more detail.

Trust in a Given Situation

Trust in a Given Situation is based on four elements, namely the Trustee’s

Reputation, the Trustor’s Propensity to Trust and Distrust and the Context

of a Given Situation (see Figure 2.3).
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Figure 2.3: Trust model for statistical data warehouse system.

The Trustee’s Reputation is based on the four key trustee characteristics

presented in McKnight and Chervany [89], which are competence, integrity,

benevolence and predictability. The perceived levels of each of these con-

tributing factors will be constantly updated via the feedback loop shown

in Figure 2.3. It is important to note that a negative delegation outcome

may not necessarily lead to a reduction in the trustee’s reputation. For

instance, we examine the scenario where the trustee was unable to achieve

the delegated goal, despite their best efforts, because of environmental cir-

cumstances. The trustor may indeed perceive the Trustee’s Reputation to

be higher than it was before the failure, because of the ways in which they

attempted to overcome the obstacles.

The Trustor’s Propensity to Trust is based on McKnight and Chervany’s

‘Disposition to Trust’ [89] or Marsh’s ‘basic’ trust [86]. This refers to a per-

son’s general trusting disposition, or how they trust in general, regardless

of the situation or the person being trusted. For example, some people are

naturally more trusting in general than others, leading to a higher dispo-

sition to trust. As with any type of trust, the level of trusting disposition

can change over time, depending on the outcomes of trusting relationships.
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Similarly, the Trustor’s Propensity to Distrust relates to a general tendency

to not be willing to depend on general others [89]. At first glance it may

appear that there is no difference between these constructs, but as discussed

in Section 2.2.4 we prescribe to the view that trust and distrust are opposite

yet separate constructs [76, 89]. By monitoring both the levels of trust and

distrust in an individual, we are better equipped to model the idiosyncrasies

of human nature. We model both the propensity to trust and propensity to

distrust by a probability density function specific to each individual trustor

(see Figure 2.4). We illustrate this function for four different general per-

sonality types, namely Optimist, Pessimist, Realist and Romantic. We note

that Marsh [86] discussed the first three of these types in terms of the way

they decide the level of trust from the experiences they had. An Optimist

will always select the best experience they had, the Pessimist the worst and

the Realist the average. Our classification is different as we consider per-

son’s total trust record over their living memory. Thus the Optimist will

have had a high level of trust in the majority of their experiences, while the

Pessimist will have had the opposite. The Realist will be more moderate in

their trust levels while the Romantic will be prone to extremes, exhibiting

either highly trusting or highly distrusting tendencies, thus having a black-

and-white approach to trust. Therefore, in the context of propensity to trust

and distrust, it is possible for high level of trust and distrust to coexist.

The fourth factor that contributes to trust in a given situation is the

Context of the Given Situation itself. The situation a person finds them-

selves in will alter the level of trust that they feel towards another. This can

in a way be thought of as the ‘Reputation of the Situation’. The history of a

person’s past trusting encounters in similar situations will clearly influence

how willing they will be to trust in the current situation. For example, some

people might be more inclined to trust doctors than car salesman. We note

again that this is independent of a particular doctor or a particular car sales-

man, but rather refers to the context of the situation. An Australian survey

[57, p.18] shows that on average the most trustworthy organisations in re-

gards to handling personal information are health service providers (91%)

followed by government departments (73%) and financial institutions (58%),

while the least trusted are real estate agencies (24%) and business selling

over the internet (17%). Another important factor within the context of the
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Figure 2.4: Propensity to Trust and Distrust Density Functions.

situation is the importance of the situation itself to the trustor. Clearly a

trustor will be more compelled to trust someone to perform a delegation task

which is very important to them. While the importance of the situation will

be also considered within the risk/benefit analysis (discussed below), we still

need to acknowledge its influence on the trust itself. For example, a patient

deciding whether or not to proceed with an operation that could save their

life will not only take into consideration the lack of other alternatives but

would arguably also feel genuinely more trusting than the objective situation

warrants.
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Risk/Benefit Analysis

When the level of trust in the given situation has been established, it needs to

be compared to the potential benefits and risks associated with the decision

to delegate. The resulting function is then used to decide if cooperation

will occur. This measure differs from the so-called ‘cooperation threshold’

proposed by Marsh [86] in that in our model the Cooperation Threshold

will be a user defined value. When the Cooperation Function is higher than

the Cooperation Threshold, then the trustor will delegate to, or place their

trust in, the trustee. Conversely, when the function is below the Cooperation

Threshold, then they will choose not to cooperate. For example, in the case

of the Data Source being our trustee, their choosing not to cooperate would

result in them withholding or altering their information.

There are four possible situations which need to be considered in the

risk/benefit analysis. The first is the benefit to be gained from a success-

ful collaboration, which we term Net Benefit of Successful Collaboration

(NBSC) with a range of [-1,+1]. The next is the Net Benefit of Unsuccessful

Collaboration (NBUC), in the range [-1,+1], which is the risk associated with

the decision to delegate to the trustee. Finally, we consider the potential

effect of non-collaboration, which we term Net Benefit of Non-collaboration

(NBNC), also in the range [-1,+1]. For all of these possible outcomes, we

can estimate a monetary value and then normalise all of the values to their

associated ranges appropriately.

Cooperation Function

Marsh [86] defines a cooperation threshold as the level situational trust must

reach for cooperation to occur. He incorporates the level of perceived risk,

the trustee’s competence, the trustor’s general trust towards the trustee,

and the importance of the situation in his calculation of the cooperation

threshold. Our Cooperation Function is somewhat simpler than this because

we have incorporated most of these elements into the calculation of Trust in

a Given Situation. The trustee’s competence makes up part of the Trustee’s

Reputation, while the importance of the delegation task is considered when
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we examine the context. Finally, the trustor’s general trust towards the

trustee is partly incorporated into the Trustor’s Propensity to Trust. Now

we only need consider the Trust in a Given Situation to the level of Perceived

Risk and Benefits to determine if cooperation will occur. When the level of

the function is higher than the selected Cooperation Threshold, the trustor

will delegate to the trustee, and when it is lower, they will choose not to

delegate.

We quantify the Cooperation Function as follows.

F = Tx(y, α) ×NBSC + (1− Tx(y, α)) ×NBUC −NBNC

where

F - function we evaluate against the Cooperation Threshold (CT ).

Tx(y, α) - how much x trusts y in the given situation, in the range

(0, +1); neither 0 nor 1 are included in the trust range, as these

values would indicate complete certainty in the outcome of the

cooperation.

NBSC - the benefit obtained from a successful collaboration, in the range

[-1, +1].

NBSC = PSC + NSC , where PSC refers to positive consequences

of successful collaboration and NSC refers to negative consequences.

PSC is in the range [0,+1], and NSC is in the range [-1,0].

NBUC - the negative consequences of an unsuccessful collaboration, in

the range [-1, 0].

NBUC = PUC + NUC , where PUC refers to positive consequences

of unsuccessful collaboration and NUC refers to negative consequences.

PUC is in the range [0,+1], and NUC is in the range [-1,0].

NBNC - the benefit obtained from choosing not to collaborate, in the

range [0, +1].

NBNC = PNC + NNC , where PNC refers to positive consequences

of non-collaboration and NNC refers to negative consequences. PNC

is in the range [0,+1], and NNC is in the range [-1,0].
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The delegation occurs when

F − CT ≥ 0.

A negative value of the Cooperation Function indicates a predicted neg-

ative outcome of the collaboration. However, if the Cooperation Threshold

is itself negative, collaboration may still occur.

Outcomes

The Outcomes of the cooperation between the trusting parties are used in

a feedback loop to incorporate the dynamic nature of trust over time. If a

trustee is able to achieve their delegated task, then this could conceivably

lead to an increase in their trustworthiness and hence an increased level of

trust in future interactions. For instance, when a Data Manager succeeds in

protecting the privacy of the Data Source, this could lead to an increase in

their trust towards the Data Manager. The inverse result of this outcome

is also easy to envisage, when the trustee has failed in their delegated task,

resulting in a decrease in their perceived trustworthiness.

Perhaps a less obvious affect of a negative outcome would be when the

trustee’s perceived reputation increases despite them being unable to com-

plete their delegation task. An example of this would be when the situation

leads to the failure of the delegation, rather than any fault on the part of

the trustee. Indeed, if the trustor is happy with the trustee’s handling of a

difficult situation this may even increase their perceived trustworthiness.

We now re-examine the earlier motivating example in a little more detail

to show how we can quantify the trust transactions discussed above.

Motivating Example Quantified. Ann has a high disposition

to distrust and relatively low disposition to trust. She is fairly

convinced that her neighbour, Bob, will snoop into her personal

records given the opportunity. In that case Ann imagines that the

whole neighbourhood will be privy to the information she wouldn’t

be happy to share. She feels pretty upset about it as she has a mild
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disability, which she does not want to become public knowledge.

Furthermore, Ann can perceive no possible benefit to participat-

ing in the survey. In the event that Ann does not participate,

she would maintain her privacy and peace of mind; however, as

she later learns, she could face a stiff monetary penalty of up to

$1,000.

We now quantify all the elements of the Cooperation Function.

1. Ann is almost certain that Bob would snoop into her record,

so we evaluate the likelihood of this happening to 0.9. Ann

does not really know whether Bob would have such an op-

portunity as she is not familiar with the workings of the

National Statistics Agency. However, knowing that Bob is

high up in the hierarchy of the organisation she imagines

that such an opportunity would be quite realistic. Thus we

evaluate the likelihood of such an opportunity to 0.5. Subse-

quently, the likelihood that Bob will snoop into Ann’s records

is 0.9 × 0.5 = 0.45. Finally, we evaluate TA(NSA,S) to

1.0− 0.45 = 0.55, that is, the trust that Ann has in the Na-

tional Statistics Agency in the context of the survey. Here

A stands for Ann, NSA for National Statistics Agency and

S for survey.

2. In this example we consider successful collaboration to be

the case where Bob does not snoop into Ann’s records, and

unsuccessful collaboration where he does. We evaluate the

positive consequences of collaboration, both successful and

unsuccessful, that is, PSC as well as PUC to 0 as Ann can

not perceive any benefit of participating in the survey. How-

ever, the negative consequences of an unsuccessful collabora-

tion include loss of her privacy and exposure of her personal

details to her community. Ann appears to be quite upset by

such a possibility and thus the negative consequences can

subjectively be quite high. It is not straightforward to quan-

tify these consequences but we could refer to previous pri-

vacy invasion cases dealt with by the courts and the corre-
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sponding damages awarded. For the sake of this example, let

us assume that the damages would be worth $3,000. Thus

we quantify NUC as -$3,000. Even in the case in which

collaboration is successful, that is, where Bob does not com-

promise the privacy of Ann’s personal records, there are still

negative consequences as Ann does not like the idea of her

personal information being held by the NSA as it makes a

future potential privacy invasion possible. Thus we evaluate

NSC to -$500.

3. If Ann chooses not to participate in the survey she will not

gain any direct benefit (apart from preserving her privacy),

so PNC is 0. However, in that case she might be fined, thus

NNC is -$2,000.

4. Ann is a logical and rational person who does not normally

take risks. She would normally not perform an action when

she predicts a negative outcome. Consequently we evaluate

her Cooperation Threshold to 0.

Putting it all together,

TA(NSA,S) = 0.55

NBSC = PSC + NSC = 0− $500 = −$500

NBUC = PUC + NUC = 0− $3, 000 = −$3, 000

NBNC = PNC + NNC = 0− $2, 000 = −$2, 000

Before we can evaluate the formula, we need to normalise NBSC ,

NBUC , NBNC , as they all need to be in their prescribed ranges.

We normalise by dividing all of these values by the maximum

absolute value, which in this case is $3,000. Thus we have,

TA(NSA,S) = 0.55

NBSC = −0.17

NBUC = −1.0

NBNC = −0.67
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F =

TA(NSA,S)×NBSC +(1−TA(NSA,S))×NBUC−NBNC

= 0.55 × (−0.17) + (1− 0.55) × (−1.0) − (−0.67)

= −0.09 − 0.45 + 0.67

= 0.13

F − 0 = 0.13

Therefore our model indicates that Ann would proceed with the

survey. However, before Ann become aware of the financial penalty

for not complying, the NNC = 0 and the overall cooperation func-

tion evaluated to -0.54 so Ann initially decided not to cooperate.

This reflects Ann’s unusually high privacy concern due to her

concealed disability.

This motivating example provides some small insight into the challenges

of quantifying the various components of our trust model. Clearly there is

a highly subjective nature to many of the elements of this model, and we

now discuss some of the complexities faced by a Data Manager wanting to

quantify trust in his/her own statistical data warehouse system.

2.5 Challenges in Quantifying Trust

Several components of the above trust model need to be evaluated on a

subjective basis by the trustor, namely the trustee’s perceived reputation

and the perceived risks and benefits for the situation. We now discuss some

of the difficulties in evaluating these constructs in the context of a statistical

data warehouse system.

2.5.1 Evaluating Trustee Reputation

We firstly look at how to evaluate the perceived reputation of the Data

Source, that is, the person providing information, some of which is of a

sensitive nature, to the Data Manager. One of the difficulties in assessing the

reputation of the Data Source is the lack of feedback that can be obtained.
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In general, the person providing the data will not be known to the Data

Manager. In fact where data has been anonymised, there may be no way

of ever knowing who provided which data. This means that the application

of any traditional reputation system, such as those presented by Abdul-

Rahman and Hailes [1], would be hard to achieve and leads us to require a

different approach to assessing reputation.

One way in which it may be possible to gauge a general level of trustwor-

thiness for a Data Source, is to ask them directly if they have been honest

in providing their information. This can be done by surveying a representa-

tive sample of Data Sources from various demographics. However, there are

several shortcomings of this approach. Firstly, there would be an additional

cost associated with obtaining such information. Secondly, there may be a

response bias if the participant feels as though the question is too revealing

[123]. This is likely to occur when the Data Source has a low level of trust

in the Data Manager, or the end receiver of their data, the Data User.

The problem discussed above can in part be solved through the use of a

randomised response technique, such as Warner’s [123]. Here the respondent

is asked to select a question from a list of questions one sensitive and a

number of non-sensitive questions, with a prescribed probability, and to

answer the question accurately. The surveyor who knows the distribution

for all non-sensitive questions is then able to estimate the responses to the

sensitive question via probability analysis methods. However tempting this

approach may seem, it realises a large cost to the Data Manager.

A less costly and perhaps more rounded approach to dealing with the

difficulty of false data could in fact be to change the focus back onto the

Data Manager themselves. We argue that in general a Data Source provides

false data in the case where they do not feel their privacy is adequately

protected. That is, they do not hold the Data Manager’s reputation in high

regard. However, that may not be the only reason for providing false data.

It may also be that the individual has a generally low disposition to trust.

There are other possible reasons for a Data Source not to provide useful

data. It could be that their own competence is lacking, and they are in fact

unable to accurately provide the data, even if willing to do so. While the

latter scenario is beyond the scope of trust, in general we shall assume that
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in the majority of cases, the Data Source is falsifying data due to a lack of

trust in the Data Manager.

Evaluating the trustworthiness of the Data Manager from the point of

view of the Data User and Data Source can be difficult. One reason for this

is that often there is no direct contact between the parties, particularly when

talking about the Data Source. One way in which reputation information

about the Data Manager can be maintained is to employ the use of a trusted

third party to record and update reputation information about the Data

Manager.

When it comes to evaluating the trustworthiness of the Data User, their

reputation will in part be dependant on who the Data User is. That is,

some occupations are naturally more trustworthy than others. For example

medical practitioners elicit a much higher level of trust than say market

researchers [57, p.17]. It is also important to know for what purpose the

data will be used. For example, a recognised research project attached to

a well respected University is likely to involve more trust than a market

research survey.

2.5.2 Evaluating Risk and Benefits

When deciding whether or not to cooperate, evaluating the level of risk

and benefits in a situation is just as important as evaluating the trust.

One of the potential negative consequences that a Data Manager has to

consider when dealing with a Data Source is whether they will withhold their

information, or potentially provide false information. However, this risk can

be outweighed by the benefit the Data Manager receives due to an increase

in their business by obtaining new data from the Data Source. When the

Data Manager is dealing with the Data User, they need to consider the risk

that the Data User may misuse the information. By the same token, the

Data User will be more likely to cooperate when they perceive some benefit

from the collaboration, such as some form of remuneration.

The risks involved for the Data Source include the risk that the Data

Manager will not properly protect their privacy, or will provide their infor-
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mation to third parties not previously agreed on. The Data Source also risks

their sensitive information being revealed to a malicious Data User. For the

Data User the main risks involve the perceived quality of the information

they receive from the Data Manager. The risks include not only the Data

Source withholding, or providing false information, but also the Data Man-

ager’s incorrect collection and management of the data before passing it on

to the Data User.

2.5.3 Privacy Protection Framework

We now provide a general Privacy Protection Framework that can be applied

to any statistical data warehouse system. The purpose of this framework is

to assist a Data Manager in evaluating the likelihood that a Data Source

and a Data User will proceed with collaboration. If this likelihood is low, the

Data Manager may choose to invest resources towards promoting delegation.

This can be done in one of the following ways.

1. The Data Manager may work towards increasing their reputation. One

way to do this would be to have harsher privacy policies that the

Data Manager and its partners, including the Data User, must abide

by. The policy can be enforced by legally binding contracts, or by

technical measures that make privacy difficult or near impossible. We

briefly mentioned such techniques in Section 2.3. In either case, for the

Data Manager’s reputation to increase the applied measures need to

be advertised to the partners. No change to reputation can occur until

both the Data Source and Data User are made aware of the means that

the Data Manager has undertaken in order to ensure privacy.

2. The Data Manager might have the ability to impose methods of co-

ercion for non collaboration, for example, fines imposed on a Data

Source for refusing to provide information.

3. Another method available to the Data Manager is offering incentives

for collaboration as is often applied as a marketing tool. This could

include such things as payments to the Data Source for providing
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their data, acknowledgement of their contribution, free samples and

discounts to the Data User, special offer and incentives.

Currently, it appears that the most common ways to encourage collabo-

ration are limited to coercion, collaboration incentives and more recently to

increasing reputation via privacy policies. In our Privacy Protection Frame-

work we focus on the remaining method, namely technical security measures,

as a way to encourage collaboration via an increase in the levels of trust of

the parties involved. We next analyse how increased security influences the

Collaboration Function and for which level of security the function reaches

the Cooperation Threshold.

SSM

0

1

Occurs
Collaboration

Security Level

Figure 2.5: Security Threshold for Data Source.

1. The higher the security, the higher the reputation the Data Man-

ager has in the eyes of the Data Source. We use SSM to denote the

security level at which the Cooperation Function reaches the Coop-

eration Threshold, that is, the minimum security level for the Data

Source to collaborate providing that all other condition remain un-

changed. Figure 2.5 shows a step function where the value 0 denotes

non-collaboration and 1 indicates that collaboration will occur.
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2. The higher the security, the higher the trust of the Data Manager that

the Data Source will provide accurate data. We denote the lowest se-

curity level at which the Data Manager will proceed with collaboration

by SMS .

3. The higher the security, the higher the trust that the Data Manager

that the Data User will not misuse the data. We denote the lowest se-

curity level at which the Data Manager will proceed with collaboration

by SMU .

4. The higher the security, the lower the confidence the Data User has

in the quality of the data. As previously discussed, security measures

can have a significant impact on data quality. We use SUM to denote

the security level at which the Cooperation Function reaches the Co-

operation Threshold, that is, the maximum security level for the Data

User to still collaborate providing that all other condition remain un-

changed. Figure 2.6 shows a step function for the Data User.

SUM

0

1

Occurs
Collaboration

Security Level

Figure 2.6: Security Threshold for Data User.

We now present the Privacy Protection Framework and give an overview

of currently available technical measures.
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The steps of the framework are as follows.

1. Evaluating Security Thresholds. The first step of our generalised

framework is to evaluate the security threshold levels required by all

the relevant parties, that is, SSM , SMS , SMU , SUM . It is important to

note that in general not all instances of the Data Source will exhibit

the same level of trust in the Data Manager and Data User and thus

they may require different levels of security. Similarly, not all instances

of the Data User require the same data quality, and thus their security

thresholds may be different as well.

2. Evaluating Security Range. The Data Manager needs to determine

the maximum security threshold among those required by the Data

Source, as well as Data Manager in relation to both the Data Source

and Data User. The security level S that will enable collaboration

should be between this value and the security threshold, i.e. S ∈
[max(SSM , SMSSMU), SUM ].

3. Selecting the Security Technique. The final step is to decide on

the most appropriate security measure to be employed in the given

context, based on the information gathered in Step 1 and Step 2. We

briefly discuss the main technical measures later in this section.

The first step of our generalised framework is to decide on the relative

levels of security required by the Data Source and statistical quality required

by the Data User. The relative levels of trust between these parties will be

a major influencing factor in this step. The higher the trust of the Data

Source in Data Manager and Data User, the less coercion necessary to ensure

participation. It is important to note that in general not all instances of the

Data Source will exhibit the same level of trust in the Data Manager and

Data User and thus they may require different levels of security.

It might be possible for the Data Manager to provide higher levels of

security to only those Data Source instances that exhibit low levels of trust

as illustrated in Figure 2.7. Similarly, the Data Manager may choose to

evaluate the trustworthiness of Data Users and to select the granularity of

the released data accordingly (see Figure 2.7).
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Data Manager

Raw Data

T1

T2

T3

T4
Data Source 4

Data Source 3

Data Source 2

Data Source 1 Data User 1

Data User 2

Data User 3

Data User 4

Figure 2.7: Security Framework for Statistical Data Warehouse system.

The Data Source preferences could be established through the prefer-

ences gathered from the Data Sources at the time of data collection. It ap-

pears that such granulated security would significantly improve the quality

of the data released to the end user. A recent work by Williams and Barker

[126] proposes a self protecting system where the Data Source selects a level

of granularity they feel comfortable with and provides information at that

level only. An important advantage of such a system is the handing back

of control to the Data Source. A drawback is the increased burden placed

on the Data Source who may not have the competence to accomplish this

task successfully. We next briefly describe some of the security measures

available to the Data Manager for privacy protection, as outlined in Step

3 of the Privacy Protection Framework. For each measure we comment on

the security level and data quality achieved by the measure.

Query restriction mechanisms reject queries that could lead to a database

compromise, and provide exact answers to other queries. Here the quality

of released statistics is unaffected, but the amount of available statistics

is typically overly restricted or a technique is easily subverted [2]. A well

known example of a query restriction method is cell suppression [26], com-

monly used by census bureaus when releasing data in tabular form. In this

method, cells that may lead to compromise are suppressed and replaced

by a missing value indicator. Several query restriction methods for online

databases have been developed, including query set size control [45], query

set overlap control [33], and partitioning [22].
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Query set size control releases a statistic to the user only if the query set

size meets a particular condition set by the database administrator. This

method was shown very early on to be easily subverted [30]. A more so-

phisticated approach is to consider the overlap between successive queries.

Although slightly more successful, the method suffers from both a high over-

head cost and is also susceptible to cooperation between multiple users [30].

Partitioning divides the individual records at the physical level into disjoint

subgroups, called atomic populations. Queries are then answered when they

only involve whole atomic populations [22]. As long as atomic populations

do not contain less than the prescribed minimum number of records, a high

level of security and precision can be achieved. The method does however

have the drawback of being overly restrictive, greatly reducing the number

of queries that can be answered and also reducing the usability of the data

[2].

Unfortunately, none of these techniques can either guarantee full protec-

tion against compromise nor can they ensure that the amount of released

statistics is maximised. The only exception is the so-called auditing of all

previously answered queries, which allows for rejecting those and only those

queries that would compromise the database [23]. The theoretical bounds

for the amount of statistics that can be released without compromise have

been established for general queries [12, 56], range queries [62, 10] as well as

for the case when higher levels of security are needed [14, 16].

Noise addition techniques prevent a database compromise by introduc-

ing an error to results of queries or to the data itself. Then an intruder

has a degree of uncertainty about the exact values even if individual values

are disclosed [2]. The drawback of these techniques is the decreased qual-

ity of released statistics, where the statistical quality is measured by bias,

precision and consistency of the modified data [2]. Noise addition is more

challenging in databases with categorical attributes which do not exhibit a

natural ordering as it is difficult to measure the added noise. A technique us-

ing decision trees was developed in [66] and another using Markov matrices

in [28], which was applied to genetic databases in [53].
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2.6 Conclusion

In this chapter we have presented a new perspective on the traditional view

of statistical databases, one which incorporates the trust relationships that

exist between the key stakeholders in the system. The direction of research

in security is increasingly moving away from so-called ‘hard security’ systems

to a softer approach, more able to cope with legitimate users providing false

or misleading information [68]. By incorporating social control mechanisms,

such as trust and reputation, into security models we are more able to cope

with real life scenarios and ultimately can achieve a higher level of privacy

and integrity, as well as usability in statistical data warehouse systems.

We have extensively examined the role that trust plays in a secure sta-

tistical data warehouse system, providing both researchers and database

managers with insight into possible impacts of low levels of trust or high

levels of risk in this type of system. To our knowledge this is the first time

trust has been incorporated in this particular context. Additionally, we have

provided a quantifiable trust model to better aid data warehouse managers

in their decision making process. This should provide them with a better

understanding of whether or not their system is operating effectively, and

more guidance as to when they need to apply traditional statistical disclo-

sure control mechanisms.

One direction for future research would be to investigate the trust atti-

tudes of Data Sources, Managers and Users to examine several case studies

and to empirically validate our model. Another important area requiring

further attention is the evaluation of the situational trust. We intend to

make a clearer distinction between subjective and objective components of

trust, thus simplifying this highly complex construct. This is already partly

captured within the concept of propensity to trust and distrust as a sub-

jective component of trust. However, the subjective/objective distinction is

not so clear in respect to the reputation of the trustee and the context of

the situation and this will be the subject of our future work in this area.



Chapter 3

Comparative Study of

Relevant Techniques

There are three kinds of lies: lies, damned lies, and statistics

–Benjamin Disraeli

Statistical database security focuses on the protection of confidential

individual values stored in so-called “statistical databases” and used for

statistical purposes. Examples include individual patient records used by

medical researchers and detailed phones call records, statistically analysed

by phone companies in order to improve their services. This problem became

apparent in the seventies and has escalated in recent years due to the massive

data collection and growing social awareness of individual privacy.

The techniques used for preventing statistical database compromise fall

into two categories: noise addition, where all data and/or statistics are avail-

able but are only approximate rather than exact, and restriction, where the

system only provides those statistics and/or data that are considered safe.

In either case, a technique is evaluated by measuring both the information

loss and the achieved level of privacy. The goal of statistical data protection

is to maximize the security while minimizing the information loss. In order

to evaluate a particular technique it is important to establish a theoretical

lower bound on the information loss necessary to achieve a given level of

57
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privacy. In this chapter, we present an overview of the problem and the

most important results in the area.

3.1 Introduction

Statistical database security, also referred to as Statistical Disclosure Con-

trol, is concerned with protecting privacy of individuals whose confidential

data is collected through surveys or other means and used to facilitate statis-

tical research. In this context “individuals” can refer to persons, households,

companies or other entities.

The earliest example of statistical databases is undoubtedly census data

whose collection, storage and analysis went through a great transformation

in the last 6,000 years. The first recorded census was taken in the Babylonian

empire in 3800BC, for taxation purposes, and was then conducted regularly

every 6 to 7 years. In ancient Egypt census started around 2500BC and was

used to assist in planning the construction of the Pyramids [43]. The first

modern census in Great Britain was taken in 1801 and was initiated out of

concern that food supplies might fail to satisfy the needs of the country’s

growing population. The census asked only 5 questions of approximately

10 million people in 2 million households. As a contrast, 200 years later,

UK census counted 60 million people in 24 million households and asked 40

questions [43].

Nowadays census is conducted regularly in virtually every corner of the

world, and is used to facilitate planning by governments and various health

and other authorities, for the benefit of the local population. In recent

years, due to rapidly growing storage and processing capabilities offered by

modern computers, data has become one of the most valuable commodities

in both public and private sector of the society, as it supports both day

to day activities and strategic planning. In addition to census, National

Statistical Offices (NSO) in various countries also collect many other kinds of

data, typically through surveys, and then process and disseminate the data

to numerous other organizations and bodies. Moreover, many other entities

have started collecting their own data, including hospitals, retail companies,
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and a range of other service providers, either for their own research, strategic

planning and/or marketing, or with the intention to sell it to other interested

parties.

Not surprisingly, this massive collection and exchange of data has added

to already growing public concern about misuse and unauthorised disclosure

of confidential individual information. Data collectors and managers are cur-

rently facing a very challenging task of obtaining and providing rich data

and unrestricted statistical access to users while at the same time ensuring

that dissemination is done in such a way so as to make it impossible for the

users to identify particular individuals. Unfortunately, these two require-

ments are typically mutually exclusive, and thus the most data managers

can hope to achieve is preserving sufficiently high quality, while simultane-

ously making identification and disclosure as difficult as possible. This task

is most commonly referred to as Statistical Disclosure Control (SDC), or

statistical database security.

There are various measures one can apply in order to implement SDC.

They generally fall into three groups: legal, administrative and technical. It

appears that a simultaneous application of all three kinds of measures is nec-

essary in order to ensure a satisfactory level of protection and to win public

trust [115]. In this chapter we focus our attention on technical measures to

ensure privacy.

An important but still not fully explored issue refers to the information

that an intruder has about statistical database. This information is usually

referred to as “supplementary knowledge” (SK). An intruder with exten-

sive SK is in a position to disclose more confidential information from the

database, and will need less effort to do that than a user without or with

little SK. Thus, the so called “intruder modeling” is an important step in de-

signing an adequate SDC measure, but unfortunately more work is needed

in thus direction [36]. In Section 3.2.3 we shed some more light on this

important issue.

There are a few different ways for dissemination of statistical databases

to occur. A dissemination method has an impact on the level of security

that can be achieved, and also dictates what SDC techniques can be applied.
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Traditionally, NSOs have been disseminating statistical databases in the

form of summary tables, usually two dimensional. Summary tables contain

aggregate data and thus are less exposed to the risk of statistical disclosure.

However, the level of detail in summary tables does not allow for some more

complex analysis of data that has now been required by users.

Consequently, NSOs have recently started releasing anonymised micro-

data files, often referred to as Public Use Microdata Sample (PUMS), which

can be public use or licensed files [115]. Both types contain very detailed

(raw) data but they differ in the level of anonymisation. Public use files are

generally available without licensing and require a high level of anonymi-

sation, such that identification of records is not very likely. On the other

hand, licensed files require the signing of legal undertaking by all the users

of the file. Identification of individual records is in general more likely in

licensed than in public use files.

Finally, Remote Access Facilities (RAF) and Data Laboratories (DL)

provide users not with microdata files but rather with an access channel

through which they can submit statistical queries and receive responses [115].

We conclude the Introduction by considering briefly the two main groups

of SDC techniques that can be deployed to protect the confidentiality, namely

restriction techniques and noise addition techniques. Restriction techniques

restrict the information that is available to a user either directly or through

response to their queries. However, all the information that remains avail-

able is exact. One the other hand, noise addition techniques preserve the

availability, but not the exactness of the data. In other words, all the data

is available but it is only approximate as it went through a perturbation

process before being released to users. Both groups of techniques have their

advantages and disadvantages and it may be necessary to apply both simul-

taneously in order to provide a required level of security.

The organization of the remainder of this chapter is as follows. In the

next section we take a closer look at the abstract model of a statistical

database and illustrate some important concepts. In Section 3.3 we discuss

restriction techniques and in Section 3.4 noise addition. Section 3.5 is de-

voted to studying information loss and disclosure risk, and Section 3.6 to
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software packages. We give concluding remarks in Section 3.7.

3.2 A Closer Look

In this section we take a closer look at the abstract model of statistical

databases, introduce some important concepts from statistical database the-

ory and illustrate them on our working example.

3.2.1 Abstract Model

Table 3.1 represents what could be a part of a census. This is, of course,

just a toy example to help us exemplify some concepts. The real census in

most countries typically contains millions of records and tens of variables.

In its abstract model a statistical database is a two dimensional table

where each row describes an individual, whether that is a person, business

or some other entity. In our Census Database example, each row corre-

sponds to an individual household. Each column describes one property of

the individual. Following the database terminology, we refer to these prop-

erties as attributes. In the Census Database, HOH stands for “Head of the

Household”, NoA (NoC ) stands for “Number of Adults (Children)”, Dw o

for “Dwelling Ownership” and Dw rep for “The Need for Dwelling Repairs”.

Each attribute has a domain associated with it, that is, a set of legal

values that attribute can have. For example, in our Census Database the

domain of the attribute NoC is the set of non-negative integers (possibly

with a prescribed maximum value), while the domain of Dw rep is the set

{no, minor, major}. The full list of domains for the attributes in the Census

Database is shown in Table 3.2.

3.2.2 Attribute Types

Attributes in a statistical database can be either confidential or noncon-

fidential, sometimes also referred to as identifiers and sensitive attributes,
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Address HOH HOH HOH HOH NoA NoC Total Dw o Dw rep

name gen income age income

1 12 First St M. Smith F 70 34 1 1 70 Y No
2 37 Grey Ave J. White M 99 39 2 2 99 Y Major
3 100 Main St F. Brown F 33 21 1 0 33 Y No
4 4/18 Hunter Rd M. Doe M 21 21 1 0 21 Y Major
5 30 Second St J. Black M 21 27 2 1 40 Y Minor
6 15 Main St H. Jones F 55 38 3 2 110 N No
7 67 River Rd J. Smith F 84 51 1 1 84 Y Minor
8 92 Third Ave A. Chang F 67 35 2 3 100 N No
9 2 Kerry Ave J. Black M 23 44 2 2 50 Y Major
10 35 Smith St B. Ross M 34 28 2 3 34 N Major
11 200 King St K. James M 45 47 2 1 45 N No
12 7 Nice Rd J. Reed M 12 60 1 0 12 Y Minor
13 82 Michael St C. Doe F 56 33 2 2 70 Y Minor
14 26 William St M. Chen F 23 31 2 3 45 Y Major

Table 3.1: Census Database for Town X

respectively. In the Census Database, arguably, nonconfidential attributes

would be Address, HOH name, HOH gen, NoA and NoC. The remaining

attributes are treated as confidential.

Nonconfidential attributes are public knowledge and likely to be known

to an intruder. These attributes may be used to identify individual records.

Some attributes can identify individual records directly, and they are re-

ferred to as direct identifiers. In the Census Database, Address and HOH

name act as direct identifiers. Other can only identify the records in com-

bination with other attributes and they are called indirect identifiers. A

subset of indirect identifiers that can be used together to identify records is

referred to as a key. Note that there is an important difference between a

key in the database theory and our key here: in the database sense, a key

is a combination of attributes that uniquely identifies every record in the

database. In other words, there are no two records with the same values

in all the attributes of the key. In our context, some values of a key may

uniquely identify a record, while other values may not. For example, in the

Census Database, (HOH gen, NoA, NoC ) act together as a key. The record

13 is uniquely identified by the key value (F, 2, 2). However, the key value

(M, 2, 2) matches both record 2 and record 9 and thus (HOH gen, NoA,

NoC ) would not qualify as a key in a database sense.

The first logical step in protecting the confidentiality in a statistical
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Name Description Domain
Address address of the household a set of strings of characters with the

prescribed maximum length
HOH name of the head of the a set of string of letters with the
name household (HOH) prescribed maximum length
HOH gen gender of the head of the household the domain is the set {F,M}
HOH income of the head of the household the set of non-negative integers
income in thousands of dollars
NoA number of adults in the household set of non-negative integers,

with the prescribed maximum value
NoC number of children in the household set of non-negative integers,

with the prescribed maximum value
Total total income of all the members of the set of non-negative integers
income the household in thousands of dollars
Dw o dwelling ownership the set {yes, no}
Dw rep the need for dwelling repairs the set {no, minor, major}

Table 3.2: Domains of attributes for Census Database in Table 3.1

database would be to remove all direct identifiers, which is typically done

in practice before data is disseminated. However, it would be wrong to as-

sume that this step alone is enough to truly anonymise the data. A big

percentage of records, especially in smaller databases are still identifiable

using keys comprising indirect identifiers. For example, about 25% of Aus-

tralian households are uniquely identifiable based only on age and the size

and sex structure of the household [115].

Note that if the Census Database were released as a licensed anonymised

microdata file, then it would probably be enough to remove direct identifiers,

i.e., attributes Address and HOH name. However, if the Census Database

were to be released as a public use file, then removing direct identifiers

would not suffice as some records can be identified from keys containing

only indirect identifiers. In that case, one of the techniques described in

Section 3.3 or Section 3.4 should also be applied. If the data is not released

in the form of a microdata file but rather accessed by users either through

RAFs or DLs no identifiers need to be removed, however some protection

technique would have to be applied in order to ensure privacy. In addition to

microdata files, RAFs and DLs, the Census Database can also be released in

the form of summary tables. Table 3.3 is an example of such a 2-dimensional

table.
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Number of Children

0 1 2 3 Total
Head Of M 33 85 149 34 334
Household F 33 154 180 145 479
Gender Total 66 239 329 179 813

Table 3.3: Total income summary table of Census Database for HOH gen
and NoC

All users of a statistical database must have the so-called working knowl-

edge which refers to the user’s familiarity with attributes contained in the

database and their domains. If the data is released through RAFs and DLs,

then the working knowledge is absolutely essential, otherwise the user would

not be able for formulate a statistical query. The knowledge of attribute do-

mains is also important in the case when data is released in the form of

summary tables or anonymised microdata files.

3.2.3 Supplementary Knowledge

In addition to working knowledge, a user of a statistical database may also

have the so-called supplementary knowledge (SK). Miller [91] distinguishes

between SK of Type I, II and III. SKI refers to knowledge of the value of a

key, which consists either of a direct identifier or a combination of indirect

identifiers. SKII refers to knowledge of a value of a confidential attribute,

while SKIII includes any SK that is not of SKI or SKII.

A user with SKI could be able to identify one or more records in the

database. Statistical database compromise (disclosure) occurs if such a user

can then disclose the values of confidential attributes for those particular

records. This is also known as exact compromise or 1-compromise to stress

the fact that an exact single confidential value had been disclosed. However,

if a user has SKII, preventing only exact compromise may not provide ad-

equate security. If, for a given confidential attribute, a user learns the sum

of values for k records, and as a part of his/her SKII he/she already knows

k−1 of them, he/she can easily deduce the remaining confidential value and

compromise the database. We define a k-compromise to be a disclosure of
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a statistic based on k or less records. It is often possible for a user to con-

clude that a particular record does not have a certain value in a confidential

attribute. This is referred to as a negative compromise.

Approximate compromise occurs when a user can learn that for a par-

ticular record the value of a confidential attribute lies in a range r with

some probability p. This often happens when data is released in the form of

summary tables and it is expressed as “n-respondent, k%-dominance” rule,

where n individuals contribute with k% or more of the value of a particular

cell in the table. For example, if only one individual contributes with 99%

of the total value, then it is easy to estimate that particular value with an

error of 0.5%. This rule has been traditionally used by the NSOs for a long

time. Finally, a relative compromise occurs when a user can learn the rela-

tive order of magnitude of two confidential values in the database [94]. For

example, in the Census Database an intruder may be able to disclose that

the total income of household 3 is greater than the total income of household

4.

3.3 Restriction

Techniques that restrict statistics can generally be divided into three broad

categories: global recoding, suppression and query restriction. The purpose

of global recoding and suppression is to eliminate rare combination of values

in attributes of a key, that is, combinations that appear either in a single

record or in a small number of records. Typically, global recoding is ap-

plied first to eliminate a majority of the rare combinations. Suppression is

applied next, to eliminate the remaining ones. It is important to note that

both techniques introduce some information loss to data. They both can

be expressed as optimisation problems where information loss needs to be

minimised. For a very good overview of these two techniques an interested

reader is referred to [125].
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3.3.1 Global Recoding

Global recoding (GR) transforms the domain of an attribute. If the attribute

is categorical, GR implies collapsing a few categories into one. For numerical

attributes GR defines ranges of values and then replaces each single value

with its corresponding range. For example, to eliminate rare combinations

in values of indirect identifiers in the Census Database, we could replace the

domains of the NoA and NoC by ranges “0 or 1”, and “2 or more”.

GR can be combined with query restriction techniques in such a way so as

to (suboptimally) minimise the number of collapsed categories and maximise

the percentage of queries that can be answered without compromise [8]. GR

can also be applied to data released in the form of summary tables, in which

case it is referred to as “table redesign” or “collapsing rows or columns” [124].

For example, in summary Table 3.3, the cell (1,4) describing the total income

of all the households with 3 children and male head of the household is

sensitive as it contains a single household (record 10). Similarly, the cell

(2,1) is sensitive as it also contains a single household (record 3). In order

to eliminate the sensitive cells, the table can be redesigned by collapsing

NoC values 0 and 1 into a single category “0 or 1” and values 2 and 3 into a

single category “2 or more”. The new summary table is presented in Table

3.4.

Number of Children

0 or 1 2 or more Total
Head Of M 118 183 334
Household F 187 325 479
Gender Total 305 508 813

Table 3.4: Redesigned Table 3.3 after global recoding.

3.3.2 Suppression

Suppression replaces the value of an attribute in one or more records by

a missing value. When applied to microdata, suppression is called local

suppression, and when applied to summary tables it is called cell suppression.
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It is important to note that in the case of summary tables it is generally

not sufficient to suppress sensitive cells. For example, if in Table 3.3 we

suppressed the two sensitive cells (1,4) and (2,1), as in Table 3.5, an intruder

would still be able to deduce their values. They would just need to subtract

the values of all the other cells in the corresponding row (column) from the

marginal total for that row (column). Thus we need to suppress at least 2

cells in each row or column that is affected by suppression. Table 3.6 shows

an example with minimum number of suppressions that we need to perform

- in this case four. These additional suppressions are referred to as secondary

suppressions. When choosing cells for secondary suppression, the following

three requirements should be satisfied [124]. Firstly, no empty cells should

be suppressed. Table redesign can be applied first, in order to eliminate

or minimize empty and sensitive cells. Secondly, in order to minimise the

information loss, the total number of suppressed cells should be as small as

possible. Finally, after the secondary suppression, an intruder will still be

able to determine a feasibility range for each suppressed cell. For example,

from Table 3.6 one can conclude that the value for cell (1,4) lies in the range

[1,67]. The third requirement that secondary suppression needs to satisfy is

that the feasibility ranges are not too narrow. Secondary cell suppression is

in general a challenging problem and can be formulated and (sub-optimally)

solved as a linear or mixed integer programming problem [125].

Number of Children

0 1 2 3 Total
Head Of M 33 85 149 X 334
Household F X 154 180 145 479
Gender Total 66 239 329 179 813

Table 3.5: Table 3.3 after primary cell suppression.

Number of Children

0 1 2 3 Total
Head Of M X 85 149 X 334
Household F X 154 180 X 479
Gender Total 66 239 329 179 813

Table 3.6: Table 3.3 after secondary cell suppression.
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3.3.3 Query Restriction

The third type of restricting techniques is the so-called query restriction,

specifically tailored towards RAFs and DLs dissemination techniques, where

users are not provided with microdata files but can rather with a channel

through which they can interactively ask queries. Since users will never

actually see the data, it is not necessary to remove direct and indirect iden-

tifiers. The user-posed queries are either answered exactly, or are rejected,

and the decision as to which queries to answer is made based on one of the

following techniques [30].

The early techniques include Query Set Size, Query Set Overlap and

Maximum Order control, which accept or reject queries based on their size,

overlap with those previously answered or the total number of attributes

involved in the query, respectively. All of these techniques were shown to

be easily subvertible; additionally, Maximum Order unnecessarily restricts

queries that do not lead to a compromise, and Query Set Overlap is compu-

tationally expensive as it requires storage and manipulation of all previously

answered queries.

Partitioning groups records at the physical level into disjoint subgroups

(called atomic populations), each containing an even number of records [22].

A query is answered only if it involves whole atomic populations. Partition-

ing provides superior security but it tends to be overly restrictive.

Threat monitoring and auditing involve keeping logs of all the answered

queries, either for each user separately, or collectively for all users [23]. A

new query is only answered if together with all previously answered queries

it does not lead to a compromise. The superiority of auditing lies in the

fact that it is the only technique that can actually guarantee prevention

of compromise without being overly restrictive. Recently there has been

a renewed interest in this technique and many enhancements have been

proposed [15, 7, 82, 83, 69, 77, 72]. The main drawback of auditing is

its excessive time and storage requirements [2]; however, for special types

of queries such as additive queries, these requirements can be significantly

reduced.
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3.4 Noise Addition

The basic premise behind any noise addition technique is to mask the true

values of the sensitive information by adding some level of error to the data.

This is done in a controlled way so as to best balance the competing needs of

security and data utility. The introduction of noise to the released statistics

makes the task of ensuring the quality of statistical analyses a challenging

one. Yet there are benefits for using noise addition methods, one being their

relative ease of implementation and low running costs.

Noise addition techniques can be categorised in several ways. One way

is by the type of attribute they can be applied to. Generally techniques

that work well for numerical data do not perform well on categorical data

and vise versa. Here by “numerical” we mean values that have a natu-

ral ordering, regardless of whether or not the values are actually numbers.

Techniques can also be classed by which stage the perturbation is added to

the data. It can be added prior to release of the statistics, in which case the

original database is generally replaced by a perturbed database on which the

statistical queries are performed. This type of method is generally known

as the data perturbation approach. For output perturbation techniques, the

perturbation is performed on the results of queries on the original data set.

We now examine some of the classes of noise addition techniques in more

detail.

3.4.1 Additive Data Perturbation

Additive noise methods for data perturbation were first introduced in the

late eighties and early nineties by Kim [70] and Tendick [112], and subse-

quently in more detail [46, 71, 130]. The Kim and Tendick method, also

known as Correlated-Noise Additive Data Perturbation (CADP) [97] uses

correlated noise to perturb a microdata file. The perturbed attribute Y is

obtained by adding a noise term ε to the confidential attribute X, that is,

Y = X + ε, where ε has a multivariate normal distribution with zero mean

and a covariance matrix equal to the covariance matrix of the confidential at-

tribute X, multiplied by the level of perturbation [97]. An interested reader
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is referred to [97] for a good summary of such early noise addition tech-

niques, which can be seen as special cases of the General Additive Data Per-

turbation (GADP), for numerical attributes described by the multivariate

normal distribution. GADP perturbs both confidential and non-confidential

attributes, maintaining the correlations between attributes. For large data

sets GADP performs well in both the data utility and disclosure prevention

stakes, but like many methods does not perform well on small databases [99].

The so-called Enhanced General Additive Data Perturbation (EGADP) can

be effectively used on both large and small data sets [98].

3.4.2 Probability Distribution

Data distortion by probability distribution involves the building of an accu-

rate statistical model M of the original data x. The perturbed data set y is

then created by randomly drawing records from the model [127]. The tech-

nique was first introduced by Liew et al. for use with confidential numerical

attributes [78]. There are three main steps to the technique. Firstly, for

each confidential attribute the underlying density function must be iden-

tified and associated parameters estimated. The next step is to use the

estimated density function in the generation of a distorted series of data

for each sensitive attribute. The final step of mapping and replacement of

this distorted data in place of the original confidential attributes is required

when the masked confidential attributes are to be analyzed alongside the

non-confidential attributes [78].

Burridge [19] uses such a model based method of data perturbation for

his Information Preserving Statistical Obfuscation (IPSO). The attributes

are grouped into two distinct sets, namely public data (y) and specific survey

data (x). For a subset of records, a model for the conditional distribution

y|x is created. Then a sufficient statistic T is generated based on the infor-

mation contained in y. Then the perturbed dataset (y′, x) , generated from

the conditional distribution of Y |(T, x), is released to the researcher. The

advantage of this method is that it preserves the values of statistics in the

sample for both large and small microdata files, unlike the GADP class of

methods [19].
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3.4.3 Matrix Masking

Duncan and Pearson showed that many perturbative methods are a special-

isation of matrix masking, which can be described as follows [39]. Given

a microdata file X, the data user is given the masked version of the file

M = AXB + C, where A is a record-transforming matrix, B is a variable

transforming matrix, and C the noise or displacing mask [39]. Random

Orthogonal Matrix Masking (ROMM) is a matrix masking technique for

continuous microdata [114]. A random orthogonal matrix is drawn from a

distribution G and applied to the original data to obtain the perturbed mi-

crodata. This microdata is then released along with the exact distribution

G and the knowledge of how the microdata has been obtained [114]. The

method preserves sample means and sample covariances and also controls

the amount of perturbation.

3.4.4 Categorial Techniques

We define a categorical attribute to be one that has no inherent ordering of

the categories. This property makes it particularly difficult to sensibly add

noise to such attributes. One of the earliest techniques specifically designed

for categorical attributes is inspired by Warner’s random sample method

[123]. One of the more promising disclosure protection methods for cate-

gorical data, proposed by a group of researchers at Statistics Netherlands,

is known as Post RAndomization Method (PRAM) [28]. PRAM can be ap-

plied to one or more attributes simultaneously. The method is similar to

the randomized response technique, in that it misclassifies categories with

known transition probabilities, allowing for unbiased estimates of certain

underlying statistics to be obtained[28]. This noise addition technique will

be discussed in more detail in Chapter 4 when we investigate its use in a

privacy protection framework for genetic databases.

One novel technique to arise from the area of data compression is Lossy

Compression, based on the well known JPEG algorithm [35, 87]. The basic

premise behind the method is to convert the numerical data file to pix-

els, compress the resulting file, which is then regarded as a masked data
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file. Scaling of the original data will generally be required to achieve pixel

grayscale values [35].

Du et al. [38] have applied a Bootstrap method to additive fixed data

perturbation techniques to evaluate the security of such methods. An de-

tailed analysis of binary random data perturbation has been conducted in

[119].

3.5 Information Loss and Disclosure Risk

A good SDC technique finds a balance between minimising information loss

on one hand and a disclosure risk on the other hand. This is a challenging

task and can be expressed as a multiple objectives decision problem [116].

In principle, for currently used noise addition techniques, a user can

estimate the distribution of original data, which can sometimes lead to dis-

closure of individual values, especially when the number of attributes is

large [37]. Re-identification disclosure occurs when a malicious user re-

identifies a record and then learns the value of a sensitive attribute for that

record; prediction disclosure occurs when a user estimates the value of a

sensitive attribute without necessarily re-identifying the record [36]. Re-

identification risk itself is very difficult to estimate and can be expressed

as a risk per record or an overall risk [125]. One of the proposed measures

for re-identification risk is the probability that a unique match between a

microdata record and a population unit is correct [108].

In the case of a noise addition technique, the information loss is measured

by deterioration in data quality, in terms of bias (the difference between

unperturbed statistics and the expected value of its perturbed estimate),

precision (variance of an estimator) and consistency (absence of contradic-

tions and paradoxes) [2]. More generally, entropy can be used to measure

information loss for any technique that modifies the original data before

releasing it to users. Such techniques include global recoding, suppression,

and noise addition techniques. In other words, these are all the techniques

except the query restriction ones where the information loss [%] is measured
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as 100%−U , where U is the usability, that is, the percentage of queries that

are accepted under the given technique.

The idea behind the entropy based measures is to evaluate the uncer-

tainty that the user still has about the original data if he/she has been pro-

vided with the modified data. If the uncertainty is zero, there is no informa-

tion loss. Formally, information loss can be expressed as H(Original|Modified),

where H(Original|Modified) is the equivocation, or the conditional en-

tropy of the original data given the modified data. For example, in the case

of local suppression H(Original|Modified) = H(Original), which means

that all the information has been lost. The main drawbacks of using the

entropy to evaluate an information loss are that it is a formal measure that

is not always easy to calculate, and that it does not allow for the data

owner’s preferences regarding, for example, the importance of particular at-

tributes. Other information loss measures include “subjective” measures

that are based on weights indicating which attributes are more important

than others and thus should be modified as little as possible [125]. Yet an-

other measure evaluates how “different” the modified and the original data

sets are, in terms of mean square and absolute error, and mean variation

of the original and perturbed data sets and their covariance and correlation

matrices [34].

In order to evaluate and compare different SDC techniques, it is im-

portant to determine the minimum information loss necessary to achieve

a given security level. For example, it was shown that, for binary data

protected by noise, a clever user who has access to perturbed subset sums

can in fact reconstruct most if not all of the original values, unless the

added noise is of the magnitude O(
√

n), where n is the number of records

in the database [32]. If the data has been protected by a query restric-

tion technique, we would like to determine the maximum usability for a

given security level, that is, the maximum percentage of queries that can

be answered without database compromise. Determining maximum usabil-

ity is a challenging problem, but some progress has been made for additive

queries. For example, for a security level that requires prevention of exact

compromise (or 1-compromise) in a database of n records where only ad-

ditive queries are allowed, maximum usability is of order Θ
∑

(n− 1

2 ) [92].
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This means that in a database with 100 records only 10% of the queries is

answerable, and for 10000 records only 1% of queries is answerable. This is

of course unacceptably low, which indicates that this level of security cannot

be reasonably achieved by query restriction techniques alone. If the preven-

tion of k-compromise is required, the maximum usability is O(n−1− k
2 ) [55],

and if a relative compromise is to be avoided then the maximum usability is

Θ(n− 3

2 ) [93, 55]. Thus in order to avoid a k-compromise, we can only answer

a very small portion of additive queries. However, situation is very different

for range queries in multidimensional databases (OLAP cubes). For large

m-dimensional databases that contain at least one record in each cell the

maximum usability is at least (2m − 1)/2m [62, 11]. Thus, most queries are

answerable without causing a compromise. General OLAP cubes have been

further studied in [121, 122, 120]. If prevention of k-compromise is required

then the maximum usability in a 1-dimensional databases is Θ(k−2) [14, 16].

3.6 Software Packages

In the past, most of the SDC techniques and software was produced by the

NSOs for use within their own organisations. In 1995 Statistics Netherlands

developed a prototype version of a software package, ARGUS, to protect

microdata files against statistical disclosure. This prototype served as a

starting point for the development of µ-ARGUS, a software package for the

SDC of microdata. The project also saw the development of τ -ARGUS, soft-

ware devoted to protecting tabular data [44]. The SDC methods that can

be used in µ-ARGUS include global recoding, local suppression, microag-

gregation and PRAM to name but a few. The sister package τ -ARGUS uses

a combination of sensitive cell recognition and cell suppression to protect

tabular data. The GHMITER hypercube heuristic software developed by

the Statistical office of Northrhine-Westphalia/Germany, has now also been

incorporated into τ -ARGUS. Other commercially available software pack-

ages include the cell suppression packages ACS, which builds on an earlier

software, CONFID, developed at Statistics Canada, and Datafly which was

developed specifically for the anonymisation of medical data [110].
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3.7 Conclusion

Statistical Database Security has undergone a big transformation in the

last few decades. What started off as disconnected efforts within NSOs

and academia is now developing into a joint international venture. The

importance of unifying policies as well as control and dissemination methods

across national borders has been repeatedly stressed at conferences and other

international gatherings of statisticians [115].

In this chapter we have provided a comprehensive overview of the com-

plexities involved in protecting statistical databases from a potential in-

truder. Existing methods of protection have been presented, as have re-

spective advantages and disadvantages of those techniques. Now that we

have some idea of the difficult task faced by a data manager attempting to

balance the competing needs of disclosure risk and quality assurance, we

will next provide a comprehensive framework for the protection of genetic

databases.



Chapter 4

Privacy Protection

Framework for Genetic

Databases

The most certain test by which we judge whether a country is really free is

the amount of security enjoyed by minorities.

–Lord Acton

Genetic databases generally contain a combination of personal informa-

tion, medical history as well as some form of genetic testing and/or sequenc-

ing results. Much of this supplementary data associated with the genetic

information can be of a sensitive nature, and the individual about whom this

information pertains may be concerned about the privacy of this informa-

tion. Additionally, the often categorical nature of the data can pose special

challenges for a data manager wanting to adequately protect the individual’s

privacy. As we saw in Chapter 3, it can be a much less straightforward task

to balance the competing needs of privacy and data quality when dealing

with categorical data than when attributes have a natural ordering.

In this chapter we will outline how the application of a SDC method

specifically designed for categorical attributes, the so-called PRAM method

76
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[54], can be applied with other techniques to provide a privacy protection

framework. In developing the framework we will take into account the

functional dependencies that can exist between different attributes in the

database, and also consider how we might best implement a measure of

similarity between categorical values within an attribute.

4.1 Introduction

Many countries around the world are currently putting a lot of effort and

resources into genetic technology. Australia is no exception. This initiative

is seen as particularly important as it can not only have general health ben-

efits for the population, but also “has enormous potential to create wealth

and knowledge-based jobs for Australia” [61, p.25]. The expectations from

genetic research are immense and wide ranging. They include improvement

in diagnosis of diseases, detection of genetic predisposition to diseases, devel-

opments in gene therapy and the design of drugs tailored to an individual’s

genetic make-up [63]. Therefore, genetic research is currently receiving vast

amounts of funding.

At the same time, surveys conducted around the globe show that there

is a growing mistrust in genetic technology. Particularly illustrative is the

fact that only 41% of Europeans surveyed in 1999 [40] believed that biotech-

nology would improve the way of life in the next 20 years, down from 46% in

1996. The results of this survey indicate that the only technology that en-

joys less confidence than biotechnology is nuclear power. It seems that most

of the public uneasiness is caused by genetically modified food and cloning,

and the fear that human genome research will lead to discrimination by

employers and insurance companies.

While at present in Australia there is no legislation specifically for use

of genetic information by employers, in the US there is an Executive Order

(2000) protecting federal employees from genetic testing as a hiring or ben-

efits requirement [24]. However, this order allows for the disclosure of the

genetic information of employees for the purpose of providing occupational

and health researchers with data. Moreover, no other employees apart from
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federal are covered by this legislation. This absence of appropriate legisla-

tion increases the danger that individuals will not agree with genetic testing.

Even when testing is used for treatment or research purposes, individuals

may fear that the genetic information will be passed on to the employers

and insurance companies.

Many believe that genetic data is more sensitive than other medical

or personal data, as it carries more information about a person’s health.

Additionally, it can provide insight into the potential health risks to the

individual, years into the future. A concern is that possibly imprecise ge-

netic information could be used by insurance companies, employers or public

authorities in the decision-making process in relation to the individual.

There are numerous examples of genetic research databases used around

the world. The best known example is the Icelandic Health Sector Database

which was proposed to consist of three separate yet connected databases, the

Health Database, the Genotype Database and the Genealogical Database

[6]. The databases would contain information about the majority of the

Icelandic population, and they would be the first centralised databases of

this kind in Iceland.

We argue that such databases do not have to represent a threat to in-

dividual privacy. It is not necessary for such databases to contain 100%

accurate data. We propose perturbing some of this data, so as to make

identification of individuals impossible and at the same time preserve the

usefulness of the database for medical research. To date, this issue has

not been successfully solved in practice. For example, the Icelandic Health

Sector Database specified the use of query set size control restrictions as a

statistical inference countermeasure, with the minimum query set size being

set to ten [6]. This method, although very simple to implement, is known to

be very weak [31]. The security function would also employ noise addition

techniques, however, the actual technique and parameters were not speci-

fied [6]. The original specifications did not include any statistical protection

whatsoever, and the above measures were only added after harsh criticism

by Ross Anderson [3], an expert in computer security. He pointed out that

originally the only measure proposed for de-identification of medical data

was the removal of obvious identifiers such as name, with encrypted social
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security numbers used as personal identifiers for records [6]. However, it

is important to note that these measures are not sufficient to provide com-

plete anonymity as any combination of attributes that uniquely identifies

an individual can be used to infer confidential individual values [3]. This

clearly indicates that more effort was required to provide an adequate level

of security in the Icelandic Health Sector Database.

The framework proposed in this chapter will solve this problem by care-

fully adding noise to the personal and health data so as not to jeopardize

statistical usefulness of the database but rather to protect the privacy of the

individuals.

The organisation of the remainder of this chapter is as follows. In the

next section we give a brief reminder of the existing techniques for the pro-

tection from statistical disclosure and we concentrate on one method in

particular, the so-called PRAM in Section 4.3. In Section 4.4 we investigate

the suitability of this method for genetic databases. In Section 4.5 we pro-

pose the use of techniques for clustering categorical attributes in order to

construct PRAM matrices. In Section 4.6 we outline the framework for pro-

tecting confidentiality in genetic databases and we give concluding remarks

in Section 4.7.

4.2 Privacy Protection Techniques

As discussed in Chapter 3, the Statistical Disclosure Control (SDC) problem

is difficult to solve and is typically dealt with in one of the following two

ways: restricting queries that users can pose to the system and adding noise

to the data. When noise is added to the data, an intruder has a degree of

uncertainty about the exact value of the data, even if an individual value is

disclosed [2]. In either case it is important to find the right balance between

the security, and usability of the database and/or the statistical quality of

released queries. We shall now briefly reiterate each of these two strategies,

and refer the reader to Section 3.3 and Section 3.4 for a more detailed review.
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Query restriction mechanisms reject queries that could lead to a database

compromise, and provide exact answers to the other queries. Here the qual-

ity of released statistics is unaffected, but the amount of available statistics

is typically overly restricted or a technique is easily subverted [2]. An exam-

ple of the later is the query size restriction control proposed for use in the

protection of the Icelandic Health Sector Database.

Noise addition techniques prevent a database compromise by introducing

an error to results of queries or to the data itself. The drawback of these

techniques is the decreased quality of released statistics, where the statistical

quality is measured by bias, precision and consistency [2].

However, the vast majority of these techniques only deal with numerical

attributes and as such are not suitable for genetic databases which typically

contain categorical attributes (those whose values do not exhibit a natural

ordering). One exception is an early paper by Warner [123]. Recently more

papers dealing with noise addition to categorical attributes have appeared

[28]. The first paper in this series was published by researchers at Statistics

Netherlands and it introduces the Post RAndomisation Method (PRAM), a

technique for disclosure protection of categorical variables in microdata files

[28]. PRAM is designed to provide protection to confidential attributes and

at the same time preserve the underlying statistical quality of the perturbed

data file. Using a predefined probability distribution, the values of one

or more attributes in a record are perturbed when applying PRAM. We

shall now describe exactly how this is achieved, using the notation from

[28, 54, 51].

4.3 Post RAndomisation Method (PRAM)

A microdata file, that loosely corresponds to a relation in a relational database,

consists of rows which represents an individual record, and columns which

represent the attributes. A sample of such a microdata file is shown in Ta-

ble 4.1, with the records representing patients who have been tested for a

genetic disorder. The first column of the table shows the record number

and the following column (“Name”)gives the surname of the patient. The
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patient’s date of birth (“DOB”) and gender is also provided, along with the

name of their family doctor. The following attributes relate to the patient’s

recent medical history, including their last hospital admission, most recent

diagnosis, the number of past pregnancies and finally a flag indicating if the

patient has been previously diagnosed with a genetic disorder.

Name DOB Gender Family Last Current Number Genetic

Doctor Hospital Diagnosis Preg. Disorder

1 Brown 23/05/64 f Chen 12/07/08 ABS234 > 1 Y
2 Brown 6/12/59 m James 13/07/08 ABS234 0 Y
3 Black 16/03/45 f Ross 13/07/08 BRC102 1 N
4 Brown 30/11/84 m Smith 15/07/08 HAV529 0 N
5 Jones 28/02/25 m Wang 20/07/08 HAV529 0 N
6 Smith 16/07/64 f Smith 21/07/08 BRC102 0 Y
7 Black 10/11/72 m Chen - ABS234 0 N

Table 4.1: Sample Genetic Database.

We now formalise the notation used in the application of PRAM on a

microdata file such as that shown in Table 4.1 We denote a single cate-

gorical attribute in the original file with the term ξ, and let X signify the

same attribute after the application of PRAM. We assume that ξ, and hence

X, has a domain of K categories with a labeling 1,2,. . .,K. The probabil-

ity, pkl = P (X = l | ξ = k), that a value, ξ = k, from the original file

has been changed into another value, X = l, in the perturbed file, where

k, l = 1, 2, . . . ,K is termed the ‘transition probability’ [28, 51]. The sum of

probabilities over all K categories in an attribute equals one, that is

K∑

j=1

pij = 1.0

where 1 ≤ i ≤ K. Hence, the transition probability matrix P for the at-

tribute ξ is given by the K×K Markov matrix shown in Equation 4.1. Any

entry pkl give the probability that the value ξ = k in the original file has been

changed to X = l in the perturbed microdata file. Note that the PRAM

method is fully described by P for each attribute in the data set, with the
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rows and columns of P representing an individual categorical value.

P =




p11 p12 . . . p1K

p21 p22 . . . p2K

...
...

. . .
...

pK1 pK2 . . . pKK




. (4.2)

For each record r in the original microdata file we apply PRAM in-

dependently as follows. Let ξ(r) and X(r) denote the value of ξ and X

respectively, of the r-th record in the corresponding data files. To apply

PRAM, given the record r with value ξ(r) = k for a particular attribute, the

value of X(r) is drawn from the probability distribution pk1, pk2, . . . , pkK ,

where pkl = P (X = l | ξ = k) is the probability that the original value k

will become l in the perturbed file.

Example. Consider the Sample Genetic Database in Table 4.1.

We take the sixth attribute, ‘Current Diagnosis’, as our unper-

turbed attribute ξ, with possible values of ‘ABS234’, ‘BRC102’

and ‘HAV529’. We can represent these categories numerically

by assigning ABS234 = 1, BRC102 = 2 and HAV529 = 3. The

Markov matrix P (shown below) indicates that the probability of

a value remaining unchanged in the perturbed file is 80%.

P =




0.8 0.1 0.1

0.1 0.8 0.1

0.1 0.1 0.8




Note that the first row and column correspond to the category

‘ABS234’, while the second row and column correspond to ‘BRC102’,

and finally the third row and column correspond to the category

‘HAV529’. Now suppose that there are 300 records in the unper-

turbed file, where 100 of the records have the current diagnosis

as ‘ABS234’, for another 100 records the current diagnosis is

‘BRC102’, and for the remaining 100 the diagnosis is ‘HAV529’.

After applying PRAM to this file using the matrix P , the expected

value of each diagnosis is still 100. However, we would expect
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that only 80 of the records with a current diagnosis of, for ex-

ample, ‘BRC102’ in the original file would remain unchanged in

the perturbed file.

Consider two categorical attributes denoted ξ1 and ξ2, with K1 and K2

categories respectively, and let X1 and X2 represent the same attributes

in the perturbed file [54, 51]. Let p(k1,k2),(l1,l2) be the probability that the

original value ξ1 = k1 is changed into value X1 = l1 while the original value

ξ2 = k2 is changed into X2 = l2. That is,

p(k1,k2),(l1,l2) =

= P (X1 = l1; X2 = l2 | ξ1 = k1; ξ2 = k2)

for k1, l1 = 1, . . . ,K1 and k2, l2 = 1, . . . ,K2. By applying PRAM simultane-

ously to ξ1 and ξ2 we are able to compound the attributes into the attribute

ξ, which has K1K2 categories [54]. For an arbitrary sth attribute, we define

the transition probabilities matrix as P (s) = {p(s)
k,l}. We can compound our

Markov matrices, P (1) and P (2) for the attributes ξ1 and ξ2 according to the

following equation

P = {p(k1,k2),(l1,l2)} = P (2) ⊗ P (1).

where ⊗ is the Kronecker product [51]. The Kronecker product (or direct

product) C = A⊗B is an (mp)× (nq) matrix with elements

cαβ = aijbkl

where

α = p(i− 1) + k,

β = q(j − 1) + l,

A is an m× n matrix, and

B is an p× q matrix

Thus if PRAM is applied independently to the attributes ξ1 and ξ2, we

can equivalently apply PRAM defined by P = P (2)⊗P (1) to the compound
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attribute. Clearly it is computationally more efficient to apply PRAM to

each attribute separately rather than to the compound attribute. However,

sometimes it is only possible to apply PRAM to the compound attribute

in order to avoid inconsistencies in the database [28]. An example of such

an inconsistency would be a perturbed database that contains a record de-

scribing a pregnant male individual. We discuss this problem in relation to

genetic databases in the following section. To alleviate such risks and pre-

serve the consistency of the database it is desirable to apply PRAM to more

than one attribute simultaneously [54]. We note that in this case we are

using the compound Markov matrix P , and that in general it is not possible

to construct matrices P (1) and P (2).

“Let Tξ = (Tξ(1), . . . , Tξ(K))t be the K-vector of frequencies of the K

categories of the attribute ξ in the original file. Similarly, TX is the vector

of frequencies in the perturbed data file” [51, p.42]. It is important that the

user is able to obtain an unbiased estimate of original frequency vector Tξ

from the perturbed vector TX . In order to achieve this it is necessary for the

Markov matrix P to be invertible or non-singular. This inverse can be used

to obtain unbiased estimates of the original file. An unbiased estimator of

Tξ can be obtained as

T̂ξ = (P−1)tTX .

We note that in this case we assumed that the Markov matrix itself will

be released to the user together with the perturbed data file. If we want to

avoid releasing the Markov matrix and if we want to simplify the analysis of

the perturbed data file, we can impose a special selection criteria for P . On

the application of invariant PRAM it is desirable to have the frequencies for

the perturbed file be as close as possible to those of the original file. [54, 51].

To achieve this P is chosen in such a way as to satisfy

P tTξ = Tξ

where P t is the the transpose of P . The K-vector of frequencies TX is then

then able to be used as an unbiased estimator for Tξ, and we no longer

need to multiply it by the inverse of P [51]. “However, when ξ has a large
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number of categories with many containing only a few observations, it can

be very difficult, or even impossible, to construct invariant PRAM so as to

preserve the simultaneous distribution of all attributes in the perturbed file

[28]” [51, p.42]. The security of PRAM is measured by the probability that

a value l in the perturbed compound attribute X corresponds to the same

value in the original attribute ξ [28]. This probability can be estimated by

an expectation ratio ER(l) as follows.

ER(l) =
pllTξ(l)∑

k 6=l pklTξ(k)

We note that in order to estimate the expectation ratio a snooper needs

the knowledge of the Markov matrix which is available to him in the case

of general PRAM. Thus in the case of invariant PRAM when the Markov

matrix is not known to the intruder, they will not be able to estimate the

expectation ratio and the data file can be deemed more secure.

We now investigate how the above techniques could potentially be ap-

plied in the context of genetic databases.

4.4 Applying PRAM to Genetic Databases

There a several ways in which PRAM can be applied to help ensure the

privacy of individuals in the database [51]. In the first instance, it can make

the intruder’s task of inferring the true values of confidential attributes for a

particular record more difficult by perturbing these attributes. For example,

if we perturb the attribute ‘Genetic Disorder’ and an intruder is able to

determine the value of this confidential attribute for a particular record in

the perturbed file, they will have a degree on uncertainty as to whether or

not the inferred value is the true value from the original file [51].

The second way in which we can apply PRAM, is to not only perturb the

confidential attributes, but also perturb non-confidential attributes. This

will make it more difficult for the intruder to apply their supplementary

knowledge about an individual to help them uniquely identify that indi-
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vidual’s record in the perturbed microdata file [51]. Because the nature of

genetic disorders is not yet fully understood, we feel that protecting the pri-

vacy of an individual by perturbing the supplementary information, rather

than genetic information, is more sensible [51]

As discussed in Section 4.3, the application of PRAM to individual at-

tributes rather than compound attributes can cause inconsistencies when

their is some form of functional dependency between attributes. This is

very much the case in the context of genetic databases which have numerous

integrity constraints. This problem is illustrated in the following example,

which refers to our Sample Genetic Database from Table 4.1.

Example. By applying PRAM independently to the attributes

‘Gender’, ξ1, and the ‘Current Diagnosis’, ξ2, we might get in-

consistencies in the perturbed data file. We denote the categori-

cal value of ’BRC102’ to represent the diagnosis of breast cancer

on a female patient, noting that males are also diagnosed with

breast cancer, although in much lower numbers. Therefore, if we

were to end up with records in the perturbed file with male ‘Gen-

der’ and ‘Current Diagnosis’ as ’BRC102’ this would provide the

intruder with the certainty that at least one of values has been

modified in the perturbed file. For simplicity, let us represent

the two categories in the attribute ‘Gender’, male and female, as

1 and 2. Similarly, let the category ’BRC102’ in the attribute

‘Current Diagnosis’ be denoted as 1. “To apply PRAM to these

attributes independently and exclude the unwanted result, it is

necessary to impose a probability of zero to p
(1)
21 and p

(2)
k1 , where

k = 2, 3, . . . ,K2” [51, p.43]. An unwanted side-effect of applying

PRAM in this restrictive way is that we have ensured that a male

in the original microdata file is also male in the perturbed file,

and the same applies to the diagnosis of breast cancer. However,

by compounding the two variables we can overcome these restric-

tions imposed by applying PRAM to the attributes independently

[51]. We just need to make sure that for the set of transition
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probabilities {p(k1,k2),(l1,l2)} we have

p(k1,k2),(l1,l2) = 0

whenever l1 = l2 = 1.

One of the potential drawbacks of using compounded Markov matrices is

that they can become much larger than the corresponding individual matri-

ces, so it is important to only apply this strategy when absolutely necessary.

PRAM can be applied to any combination of independent or compound vari-

ables for the m attributes ξ1, . . . , ξm, and this flexibility is clearly a strength

of PRAM. However, the difficult task here is how best to choose the Markov

matrices in order to adequately ensure the statistical quality of the data.

By compounding any strongly related attributes, we have the best chance of

preserving the underlying statistics of our original data in the perturbed file.

Although, the best way to decide which attributes should be compounded

is still an open problem [28, 51].

Once the compound attributes are identified the corresponding Markov

matrices have to be constructed. The authors of [28] suggest that the set of

categories for each attribute be partitioned into groups such that a category

can only be replaced by a category in the same group. They further suggest

that the categories within the same group are “in some sense similar”. We

note that the notion of similarity is not straightforward for categorical values.

We suggest utilising results from the emerging topic of clustering categorical

attributes, which we present in the following Section.

4.5 Clustering Categorical Attributes

There has been a lot of work done on clustering numerical data [60]. Only

a few recent papers propose techniques for clustering categorical data [48,

50, 58]. We next describe some of this work.

In the paper by Gibson, Kleinberg and Raghavan [50], clustering is per-

formed using techniques from non-linear dynamical systems motivated by
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spectral graph partitioning. The algorithm presented in this paper is named

STIRR. The data file is represented by a hypergraph whose vertices are val-

ues from the “actual domains” of the attributes. The actual domain of an

attribute is the set of values of that attribute that actually appear in the

data file. Hyperedges in the hypergraph represent tuples in the data file.

We illustrate this using an example similar to the one in [50]. Consider the

data file shown in Figure 4.1, containing three attributes, a, b and c. The

actual domain of a is {a1,a2,a3}, the actual domain of b is {b1,b2,b3,b4}
and for c it is {c1,c2,c3}. Each of the values in the actual domains represents

a vertex in the hypergraph and each tuple represents a hyperedge, as shown

in Figure 4.1.

a b c

a1

a1

a2

a2

a3

a3

b1

b1

b2

b3

b4

c1

c1

c2

c2

c3

c3

a1

a2

a3

b1

b2

b3

b4

c1

c2

c3

a3 b2 c2

b4

Figure 4.1: A Sample data file and the corresponding hypergraph.

Each vertex v has a weight wv associated with it. Each weight is then

propagated across all hyperedges containing the vertex. This weight prop-

agation process is applied iteratively until a basin is reached, that is, until

weights remain constant under repeated application or they go through a

finite cycle. In the post-processing step clustering of vertices is performed on

the basis of the weights, where large positive or negative weights represent

dense regions with lots of hyperedges within and few between the regions. In

other words, categories in each attribute are partitioned on the basis of their

co-occurrence with the same categories of other attributes. For example, if

two diagnoses, say BRC102 and ABS234, often appear with gender female

and age group over 40, they may be considered similar.

An approach taken by Gantri, Gehrke and Ramakrishnan [48] describes

clusters for categorical attributes as generalised clusters for numerical at-

tributes. The algorithm that discovers the clusters, known as CACTUS, is
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very efficient and doesn’t require any post-processing. The clusters can be

found across all attributes or across a specified subset of the attributes. This

feature looks particularly interesting for application in constructing PRAM

Markov matrices as it can be used to identify clusters for compound at-

tributes. A drawback of this method in relation to PRAM matrices is that

it discovers overlapping clusters and it appears to be non-trivial to extract

the best non-overlapping clusters.

The so-called “ROCK” technique proposed by Guha, Rastogi and Shim

[58] clusters tuples based on the number of links between them, where a link

corresponds to a common neighbour of the tuples. Two tuples are neighbours

if the similarity between them is greater than some given threshold for a

given similarity function.

The value of identifying clusters for constructing Markov matrices lies in

the similarities between categories that clusters imply. In the context of noise

addition we are really interested in finding a similarity measure between

categories in order to construct the Markov matrices. The probability of a

category changing into another category should decrease as the similarity

between these two categories increases.

One possible approach to solving the problem of deciding similarity be-

tween categorical values, is to break down a categorical attribute into sub-

attributes. This idea originated in [7], and we illustrate it with the following

example presented in [51].

“Suppose that an attribute ’city’ has the following categories:

Sydney, Newcastle, Dubbo, Perth, Cobar, Alice Springs and

Adelaide. It is very hard to assign an ordering to this attribute

that would apply equally to various contexts. However, we can

break down this attribute into the following sub-attributes: ‘pop-

ulation’, ‘geographical longitude and latitude’, ‘pollution index’

and ‘is coastal’. Which of these attributes we use will depend

on the application. For example, in genetic databases pollution

index would probably be a relevant attribute.” [51, p.44]

By breaking down the attributes into sub-attributes we are effectively
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reducing the task of finding the similarities between the categories of the

original attribute to the task of finding similarities between categories of

sub-attributes. In the above example, each of the obtained sub-attributes

can be naturally ordered which makes the task of finding similarities straight-

forward.

We propose combining the clustering approach with the attribute di-

vision approach by adding all the relevant sub-attributes to the data file

schema. So, for example, if we originally had the attribute ‘city’ in the data

file, we may now also have ’population’ and ‘pollution index’. It is quite

possible that some of the identified sub-attributes would already exist in the

data file and we add the others as required. We would next apply a cluster-

ing algorithm, for example STIRR [50], to the expanded data file. We note

that this will have an effect only when for two categories the values of the

same sub-attribute are identical. Only then will there be new connections

between hyperedges. To ensure that the similar values of a sub-attribute

also create connections we need to group categories in the sub-attributes

and to replace individual categories with group representatives. Our future

work will include experiments in this direction, but the specific application

of clustering to sub-attributes is beyond the scope of this thesis.

4.6 Framework for a Genetic Database Security

System

We propose a framework for the provision of security on genetic databases.

This framework involves four steps as outlined below.

Step 1: Integrity rules

Step 2: Compound attributes and Markov matrices identification

Step 3: Category clustering

Step 4: Markov matrices.

In the first step we identify the integrity rules that exist in the data

file. Such rules could include that people under 15 cannot be married, or in
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full-time employment. This step requires a very thorough analysis since any

unidentified rule carries a risk of introducing inconsistencies in the perturbed

data file.

In the second step we partition the set of all attributes into compound

attributes some of which may be individual, and we associate a Markov ma-

trix to each compound attribute. We propose focusing on integrity rules and

whenever two attributes are involved in the same integrity rule, they appear

in the same compound attribute. For example, the two above mentioned in-

tegrity rules will imply that ‘age’, ‘marital status’ and ‘employment’ should

be in the same compound attribute.

As for the clustering step, we consider the STIRR algorithm [50] partic-

ularly suitable for constructing Markov matrices. The reason for this lies in

the weight propagation method that in some way incorporates the correla-

tion between various attributes. Recall that the categories are considered

similar if they appear with the same categories in other attributes. For ex-

ample, consider the current diagnosis ‘BRC102’ which typically appears in

patients over 40 and another diagnosis, say measles, which typically appears

in children. It is unlikely that these two diagnoses will belong to the same

cluster unless they strongly exhibit some other common properties. Our

future work will include experimental evaluation of correlation preservation

via the STIRR clustering method.

In the last step we construct Markov matrices based on identified clusters

of categories. One approach is to choose the transition probabilities so that

a perturbed category is always in the same cluster as the original category.

Another approach is to allow perturbation that takes a category to another

cluster but with a much smaller probability than when keeping it in the

same cluster. Whenever possible the resulting Markov matrices should be

non-singular.
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4.7 Conclusion

In this chapter we proposed a framework for protecting confidentiality in

genetic databases that is also applicable to other databases with predomi-

nantly categorical attributes. The framework is based on the PRAM noise

addition technique proposed in [54]. However, the original technique does

not specify how the Markov matrices should be constructed. The authors

suggest that the compound attributes should be constructed in such a way

that the inconsistencies are minimised and that the correlations between

attributes are preserved [28]. Rather than suggesting how the categories

should be partitioned into groups, the authors indicate that this is up to

the data protector and that one possible way is to group similar categories

together [54]. The main contribution of this chapter is in the construction

of Markov matrices based on clusters of the categories in the compound at-

tributes. We expect this approach to improve the statistical quality of the

perturbed data file, while at the same time ensuring the security of sensi-

tive attributes. This approach will be further examined in Chapter 6. In

the next chapter we will investigate a new similarity measure specifically

designed for use with data sets containing categorical attributes.



Chapter 5

Similarity Measure for

Categorical Values

Learning is not attained by chance, it must be sought for with ardor and

attended to with diligence.

–Abigail Adams

In the previous chapter we outlined a privacy protection framework de-

signed for application to categorical attributes. An important step in this

framework is the clustering of categorical values into partitions so that we

can then apply a noise addition technique based on the partitioning. An

important component of any partitioning technique is the notion of similar-

ity between the attribute values being grouped. We seek to maximise the

similarity between nodes in the same partition, while also minimising the

similarity between nodes from different partitions. Hence, before we can

perform a partitioning of the values within our data set, we must first define

what makes two vertices in our graph similar.

In this chapter we outline the similarity measure that will be employed

in our noise addition technique in Chapter 6. We first outline the motiva-

tion for the similarity measure, before formally defining the measure. We

then present experimental results on several different data sets, which will

highlight the effectiveness of our measure. We finish with a discussion of

93
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several novel applications of the security measure which became apparent

during the analysis of experimental results.

5.1 Motivating Example

The following example is designed to illustrate the relationships that exist

in the microdata file, and how our technique attempts to capture these

relationships. Table 5.1 shows a sample ‘toy’ microdata file for lecturers

teaching courses within several different disciplines at a fictional university.

Lecturer Program Course Tutor

Prof. T. Green Medicine Intr. Medicine Dr D. Smith
Dr D. Blue Medicine Bioinformatics Dr D. Smith

Dr M. Brown Mathematics Mathematics 1 R. Jones
Dr H. Pink Mathematics Mathematics 2 W. Wong

Prof. K. White Computer Science Mathematics 2 W. Wong
Dr J. Black Computer Science Mathematics 1 W. Wong
Dr J. Black Computer Science Bioinformatics M. James

Table 5.1: Lecturer Microdata File - Sample

The following is a description of records belonging to lecturers as shown

in the above table.

• Professor T. Green, who is an academic in the medicine faculty and

teaches an introductory medical course tutored by Dr D. Smith.

• Associate Lecturer Dr D. Blue also works in the medicine faculty and

teaches a course in bioinformatics also tutored by Dr D. Smith.

• Lecturer Dr M. Brown is a mathematician teaching a first year calculus

course, his tutor in this course is R. Jones.

• Dr H. Pink lectures for the mathematics faculty and teaches a second

year mathematics course tutored by W. Wong.

• Professor K. White is a computer scientist who teaches a first year

calculus course to computer science students. This subject is tutored

by W. Wong.
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• Dr J. Black is a Senior Lecturer from the computer science faculty who

teaches both bioinformatics and a second year mathematics course. He

has a different tutor in each course, with W. Wong tutoring mathe-

matics and M. James tutoring the bioinformatics course.

On reading the above scenarios we can clearly see a connection between

Prof. Green and Dr Blue, who both teach in the medical faculty and use the

same tutor for their courses. However, it may not be so obvious that there is

a connection between Dr Brown and Prof. White as they have no attribute

values in common; both teach different courses, in different programs and

use different tutors. However, further investigation shows that they both

share attribute values in common with Dr Pink and Dr Black, so there

should be some notion of similarity between these two lecturers.

To better understand these connections between the lecturers we can

represent the database shown in Table 5.1 as a graph. This is done by as-

signing values that appear in the database to vertices. An edge appears

between two vertices when the corresponding two values appear together in

a record. Figure 5.1 shows the graph generated from the lecturer micro-

data file, with the vertex labels assigned to the values shown in Table 5.2.

Each record forms a clique in the graph. The red circled subgraph in Fig-

ure 5.1 represent record 7 in the database, that is, Dr Black who teaches

Bioinformatics in the computer science faculty using M. James as a tutor.

Note that we will be evaluating similarity only between vertices corre-

sponding to the values of the same attribute in the data set. Thus similarity

will be evaluated between vertices 1-6, 7-9, 10-13 and 14-17. In the sample

database Dr Black (vertex 6) has direct similarity with every other lecturer

except for Prof. Green. This direct similarity is indicated by one or more

common neighbours of the corresponding vertices (or, equivalently, by a

path of length two between the vertices). We note that there are no edges

between vertices corresponding to the values of the same attribute.

Figure 5.1 shows that there are no common neighbours of vertex 3 (Dr

Brown) and vertex 5 (Prof. White). This effectively means that the records

pertaining to Prof. White and Dr Brown will have no values in common. So

any method only looking at common values, that is, common neighbours,
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Value Vertex Number Attribute Number

Prof. T. Green 1 1
Dr D. Blue 2 1

Dr M. Brown 3 1
Dr H. Pink 4 1

Prof. K. White 5 1
Dr J. Black 6 1

Medicine 7 2
Mathematics 8 2

Computer Science 9 2

Intr. Medicine 10 3
Bioinformatics 11 3
Mathematics 1 12 3
Mathematics 2 13 3

Dr D. Smith 14 4
R. Jones 15 4
W. Wong 16 4
M. James 17 4

Table 5.2: Vertex labeling for Table 5.1 in Figure 5.1

would not find these two values at all similar. However, looking at the data

set it is clear that there is some transitive similarity between Dr Brown and

Prof. White, as they both teach mathematics although at different levels.

Nevertheless, in most circumstances these two courses would typically be

considered similar in the university context. In database terms this simi-

larity is captured by the fact that both Mathematics 1 and Mathematics 2

are always taught to the same student cohorts (computer science and math-

ematics). Moreover, subjects taught by Prof. White and Dr Brown are

tutored by different support staff, R. Jones and W. Wong. However, these

two staff are considered similar because they both teach Mathematics 1.

Thus, although Prof. White and Dr Brown do not teach the same course,

and are not assisted by the same tutor, they do indeed teach similar courses

and are supported by tutors of similar expertise. Consequently, we may still

wish to consider Prof. White and Dr Brown as similar. Our method aims to

capture this kind of similarity by looking not just at common neighbours of

two vertices, but also at common neighbours of their neighbours. We now

outline how this type of similarity can be measured.
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Figure 5.1: Motivating example database represented as a graph.

5.2 Evaluating Similarity

The first step in calculating similarity between attribute values is to create

a graph of the original microdata file represented via an adjacency matrix.

Recall that each value occurring in the file becomes a vertex in the graph,

where there is an edge between vertices when two corresponding values ap-

pear together in a record. Hence, for each record in the microdata file, we

form a clique in the resulting graph. Note that we have considered both

the simple graph and multigraph created from the data set. In the simple

graph we create an edge between two attribute values if they co-occur in

any record. In the multigraph form we count the number of co-occurrences

of the two values and consider this as the number of edges between the two

corresponding vertices.

The first type of similarity we consider is based on the values co-occurring

in records. For example, in our Motivating Example from Section 5.1, we

would consider that Prof. Green and Dr Blue are similar since they both

teach in the medicine faculty and use the same tutor for their courses. This

type of similarity, which we term S
′

or S-Prime similarity, is measured by the

number of common neighbours of these two vertices in the graph. Looking

at Figure 5.1 we see that vertex 1 (Prof. Green) and vertex 2 (Dr Blue)

are both adjacent to vertex 7 (Medicine) and vertex 14 (Dr D. Smith). We
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consider this as a high similarity since these two values only have mostly

common neighbours in the graph. In other words, most of the values that

appear in the same record with one of these values, also appear with the

other one.

The second type of similarity we consider is that of ‘neighbours of neigh-

bours’. We denote this type of similarity as S
′′

or S-Secundum similarity,

and measure it by first considering the S-Prime similarity of ‘neighbours’.

An example of this type of similarity as discussed in Section 5.1 is between

Dr Brown and Prof. White, who although do not share any attribute values

in common, do share ‘similar’ values. For instance, the Computer Science

and Mathematics programs would be considered similar via an S-Prime cal-

culation. Similarly, the Mathematics 1 course is similar to the Mathematics

2 course, and tutor R. Jones is similar to W. Wong. This means that all of

the values that Dr Brown and Prof. White appear with in the data set are

considered similar via S-Prime similarity, and hence these two values would

have a high S-Secundum similarity.

The Total Similarity S for two attribute values is taken to be composed

of both the S-Prime and S-Secundum similarity for the values. We now

provide a formal definition of our similarity measure S.

5.2.1 Similarity Measure - Sij

We define a simple graph G = (V,E) on n vertices and m edges, where

v ∈ V represents an attribute value in the data set. An edge {i, j} ∈ E

exists between two vertices i, j ∈ V when the values i and j both appear

together in one or more records in the data set. The adjacency matrix, A,

for graph G will contain a 1 in position aij if an edge {ij} appears between

the vertices i and j, and 0 otherwise.

We also consider a multigraph representation of the data set. We define

a multigraph H = (V,E) on n vertices and m edges, where v ∈ V represents

an attribute value in the data set. An edge {i, j} ∈ E exists between two

vertices i, j ∈ V for each record that contains both the values i and j. We

do not allow self-loops in this graph. In the adjacency matrix A for graph
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H, aij is the number of edges appearing between the vertices i and j in H.

The S
′

ij or S-Prime similarity between two attribute values is given by

the following formula

S
′

ij =

n∑

k=1

√
aik × akj

√
d(i)× d(j)

(5.2)

where the sum is over all vertices in the graph G (or H), alm is the adjacency

matrix entry for vertices l and m (1 ≤ l,m ≤ n) and d(l) is the degree of

vertex l. Note that S
′

ij has a maximum value of 1 when the two vertices

have all their (d(i) = d(j)) neighbours in common, and a minimum value

when two vertices have no neighbours in common (S
′

ij = 0). S-Prime values

are only calculated within an attribute and not across attributes.

The S
′′

ij or S-Secundum similarity attempts to capture a notion of transi-

tive similarity for attribute values that are not necessarily directly connected

to a common neighbour but are connected to similar values, that is, values

which have a S
′

ij value greater than the user defined Threshold T . The

algorithm for calculating S
′′

ij is shown in Algorithm 5.1.

The actual algorithm implemented in the program, as shown in Ap-

pendix A in Section A.1, is in effect significantly more efficient than the

algorithm shown in Algorithm 5.1.

We calculate the total similarity Sij as a weighted sum of the S-Prime

(S
′

ij) and S-Secundum (S
′′

ij) similarities.

Sij = c1 × S
′

ij + c2 × S
′′

ij (5.3)

where c1 + c2 = 1. Typical values might be c1 = 0.65 and c2 = 0.35. In the

next section we experiment with different values for c1 and c2.
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Input: Graph G, Threshold T

Output: S
′′

values for G

initialise S
′′

matrix to 0;

for each attribute x ∈ G do
get the list of attribute values valx;

/* Loop over all pairs of values for the attribute x */

for each value i ∈ valx do

for each value j ∈ valx do
initialise mergedGraph to G;

/* Loop over all attributes in G, excluding x */

for each attribute y ∈ G \ x do
get the list of attribute values valy;

/* Loop over all pairs of values in y */

for each value c ∈ valy do

for each value d ∈ valy do
if (there are egdes ({c, i} and {d, j}) ∨ ({c, j}
and {d, i}) in G) ∧ (c and d not already in the

same vertex in mergedGraph) then

if S
′

cd > Threshold T then
merge vertex c and d in mergedGraph;

/* Note: if one vertex has

already been merged with

another, merge all together */

end

end

end

end

end

S
′′

ij = S
′

ij calculated on mergedGraph

end

end

end

return S
′′

matrix;

Algorithm 5.1: Calculating S
′′

values for graph G
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5.3 Experiments - Similarity

In this section we present the results of experiments conducted on several

data sets, both synthetic and real life, to observe the effectiveness of our

similarity measure.

5.3.1 Data Sets

A variety of data sets have been selected to best demonstrate various qual-

ities and characteristics of our similarity measure Sij . The main properties

of these data sets are given in Table 5.3, and more detailed descriptions of

each are provided below. Note that Table 5.3 shows information for the

data sets after we perform some preprocessing, with the number of records,

number of attributes, and number of distinct values in the data set noted.

Data Set No. Records No. Attr. No. Values Notes

Motivating Example 7 4 17 Example from Section 5.1

Mushroom 5,644 22 99 Fully categorical

Contr. Meth. Choice 1,473 10 74 Mix of num. and cat.

Wisc. Breast Cancer 683 10 91 9 num. and 1 class attr.

ACS PUMS 20,000 14 664 Mix of num. and cat.

Table 5.3: Data Set Summary.

• Motivating Example. This is the same data set presented in Sec-

tion 5.1, and is used to illustrate advantages of our technique over

other similarity measures.

• Mushroom. This data set was selected as it contains only categorical

values, and has been previously studied in the context of classification

[58]. It is obtained from the UCI Machine Learning Repository [5].

The original data set contains 8124 instances on 23 attributes (includ-

ing the class attribute). The following preprocessing of the data was

undertaken. Attribute 17 (veil-type) was removed as it only had one

value in the data set and including it would falsify similarity across

all values, this is due to the fact that records with missing values were

not considered. This reduces the size of the data set from 8124 to 5644
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records. It also reduces the number of attribute values, from 118 to

99. Although it is not ideal to have this reduction in the number of

values considered, it is beyond the scope of this work to consider how

best to deal with missing values in data. Table A.4 in Appendix A

shows the full list of attribute values and corresponding vertex labels

for this graph.

• Contraceptive Method Choice. This data set is also sourced

from the UCI Machine Learning Repository [5, 79], and is a sub-

set of the 1987 National Indonesia Contraceptive Prevalence Survey.

The subjects of the survey were married women from different de-

mographic and socio-economic backgrounds, who were not currently

aware of being pregnant. The data set contains 1473 records over

10 attributes, five of which are numerical, or have a natural ordering,

and the remainder are categorical or binary. The attributes are, Wife’s

Age, Wife’s Education, Husband’s Education, Number of Children Ever

Born, Wife’s Religion, Wife’s Now Working, Husband’s Occupation,

Standard-of-Living Index, Media Exposure and Contraceptive Method

Used. For more details about the attribute types and attribute values

please see Section A.4 in Appendix A.

• Wisconsin Breast Cancer. This data set is sourced from the UCI

Machine Learning Repository [5] and was originally obtained from the

University of Wisconsin Hospitals, Madison, from Dr. William H.

Wolberg [84]. The data pertains to measurements performed on tissue

samples taken from suspected breast cancer patients. It consists of 9

numerical attributes and one class attribute, namely Clump Thickness,

Uniformity of Cell Size, Uniformity of Cell Shape, Marginal Adhesion,

Single Epithelial, Bare Nuclei Cell Size, Bland Chromatin, Normal

Nucleoli, Mitoses and Class. It classifies records as either benign or

malignant based on the values of the other 10 attributes whose values

have all been normalised to discrete numbers in the range [1,10]. There

were 16 records in the original data set with one or more missing values,

which have been removed, leaving 683 records and 91 distinct values

in the dataset.

• ACS PUMS. The American Community Survey (ACS) is an ongo-

ing survey conducted annually by the United States Census Bureau
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and was designed to provide a snapshot of the community. We took

a random sample of 20,000 records from the 2006 Housing Records

Public Use Microdata Sample (PUMS)1 for the whole of the US. The

sub-sample was chosen on only 14 attributes of the available 239, and

any records with missing values on these attributes was not consid-

ered. The attributes selected were State Code (ST), Age (AGEP),

Citizenship status (CIT), Class of worker (COW), Means of trans-

portation to work (JWTR), Marital status (MAR), Educational at-

tainment(SCHL), Sex (SEX), Wages or salary income past 12 months

(WAGP), Usual hours worked per week past 12 months (WKHP), Re-

coded detailed ancestry (ANC1P), Total person’s income (PINCP), Re-

coded detailed race code (RACE1P) and World area of birth (WAOB).

For more details on how the data set was extracted please see Section

A.6 in Appendix A.

5.3.2 Parameter Selection

There is a certain amount of flexibility in the calculation of the similarity

measure S which must be considered when running experiments on the se-

lected data sets. First, there is a choice for the value of the S-Secundum

Threshold T , which is in the range [0,1]. One observation on the selection

of this threshold, is that for smaller/sparser graphs the threshold generally

needs to be set at a lower value than it does for larger/denser graphs.

The second parameter that needs to be selected is the weighting values c1

and c2 in Equation 5.2. The restriction for these values is that c1 + c2 = 1,

and a typical value choice for these parameters would be c1 = 0.6 and

c2 = 0.4. This gives a slightly higher weighting to S-Prime than to S-

Secundum.

The final parameter to be selected relates to the graph being generated

from the data set. We have the choice of making this graph a simple graph

or a multigraph, that is, a graph with multiple edges.

When showing results for the similarity measure we will generally present

1http://factfinder.census.gov/home/en/acs pums 2006.html
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a range of parameters for comparison. However, in general we would not

want to set the values of the parameters neither too high, nor too low. For

instance, setting the value of c1 to a value of 1.0 will have mean that the total

similarity be equivalent to S-Prime, since none of the S-Secundum has been

taken into consideration. Similarly, if we set the S-Secundum Threshold T to

a very low value, we will be considering values with only a very small number

of neighbours in common to contribute to the S-Secundum similarity.

5.3.3 Results

We now present the results of experiments conducted on the data sets out-

lined in Section 5.3.1. The results presented are only a subset of the overall

experiments conducted in order to test our similarity measure. We present

a range of results to illustrate the effectiveness of our measure.
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Figure 5.2: Similarity color map for Motivating Example.

One way in which we present the similarity values is via a colour map,
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as shown in Figure 5.2. The colour map assigns different colours to different

values as per the colour bar on the right hand side of the diagram. Dark

red maps to 1.0 and and dark blue to 0.0. This figure shows Sij values for

the Motivating Example graph on all 17 values over the 4 attributes. The

parameters are as follows, the S-secundum Threshold T has a value of 0.4,

while c1 = 0.6 and c2 = 0.4 are the percentage weightings for Equation 5.2.

Value S1,1 is in the bottom left hand corner of Figure 5.2, and value S17,17 is

in the right hand top corner. If you look at the diagonal between these two

values, you will see that all values along the diagonal are 1.0, since each value

has maximum similarity with itself. Areas outside of an attribute are dark

blue since we do not consider the similarity between values from different

attributes. Note that the diagram is symmetric since the similarity of Sij is

equivalent to Sji in our measure.

As we discussed at the beginning of Section 5.3 when first proposing our

similarity measure, in the Motivating Example vertex 3 (Dr Brown) and

vertex 5 (Prof. White) are somewhat similar in our graph (Figure 5.1) via

an S-Secundum similarity, even though their S-Prime similarity is 0. This

is reflected in Figure 5.2 by the pale blue colour for entry S3,5, which is a

value of 0.4. Note that this value would change for a different choice of c1

and c2.

Motivating Example

Here we present the similarity values for the Motivating example presented in

Section 5.1. Figure 5.3 shows the similarity value comparison for different S
′′

Threshold T values across all attributes in the data set. From this diagram

we can see that when T is very low, for instance 0.1, many of the values

within attributes appear very similar to on another, indicated by dark red

in the diagram. As T progresses from 0.1 to 0.6 red gradually gives way to

orange and eventually green and blue and we can see that for such a small

data set there is little difference between the S
′′

and S
′

similarities after T

is set above 0.7

Examining the similarity values we can compare the S
′

ij and S
′′

ij values

to the scenarios discussed in Section 5.1. Table 5.4 give the S
′

ij similarity
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Figure 5.3: S
′′

Threshold T comparison for motivating example.

values for the first attribute in our motivating example, that is, Lecturer.

The vertex numbers in the table correspond to the attribute values as follows,

Vertex 1 (Prof. Green), Vertex 2 (Dr Blue), Vertex 3 (Dr Brown), Vertex 4

(Dr Pink), Vertex 5 (Prof. White) and Vertex 6 (Dr Black). Table 5.4 shows

that Vertex 5 (Prof. White) and Vertex 3 (Dr Brown) have no S-Prime (S
′

ij)

similarity since they have no values in common in the data set. However,

Table 5.5 shows that when the S-Secundum (S
′′

ij) Threshold (T ) is equal to

0.4, these two values have a S
′′

ij similarity of 1.0. This supports the notion

that although these two lecturers do not have any direct similarity in the

data set, they do have a transitive similarity which should be considered in

any subsequent clustering of these values. Now by choosing the values for c1
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S
′

ij 1 2 3 4 5 6

1 1.000 0.667 0.000 0.000 0.000 0.000
2 0.667 1.000 0.000 0.000 0.000 0.258
3 0.000 0.000 1.000 0.333 0.000 0.258
4 0.000 0.000 0.333 1.000 0.667 0.258
5 0.000 0.000 0.000 0.667 1.000 0.516
6 0.000 0.258 0.258 0.258 0.515 1.000

Table 5.4: S
′

ij values for Lecturer attribute in Motivating Example.

and c2 we can give the desired weight to this indirect similarity represented

by S
′′

ij . In Table 5.6 we can see the situation for c1 = 0.6 and c2 = 0.4. Note

that the similarity results for the remaining attributes in the Motivating

Example are provided in Section A.2 of Appendix A.

S
′′

ij 1 2 3 4 5 6

1 1.000 1.000 0.000 0.000 0.000 0.258
2 1.000 1.000 0.000 0.000 0.000 0.258
3 0.000 0.000 1.000 1.000 1.000 0.775
4 0.000 0.000 1.000 1.000 1.000 0.882
5 0.000 0.000 1.000 1.000 1.000 0.882
6 0.258 0.258 0.775 0.882 0.882 1.000

Table 5.5: S
′′

ij values for Lecturer attribute in Motivating Example with
T=0.4.

Sij 1 2 3 4 5 6

1 1.000 0.800 0.000 0.000 0.000 0.103
2 0.800 1.000 0.000 0.000 0.000 0.258
3 0.000 0.000 1.000 0.600 0.400 0.465
4 0.000 0.000 0.600 1.000 0.800 0.508
5 0.000 0.000 0.400 0.800 1.000 0.663
6 0.103 0.258 0.465 0.508 0.663 1.000

Table 5.6: Sij values for Lecturer attribute in Motivating Example with
T = 0.4, c1 = 0.6 and c2 = 0.4.

In general, for the Motivating Example data set we show the effect of

the choice of c1 and c2 on the total similarity. The colour map in the top

left corner of Figure 5.4 shows the S-Prime values, and the position directly

to its right shows the S-Secundum values when T = 0.4. The remaining
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frames provide us with an example of how a change in the relative values of

c1 and c2 impacts on the resulting total similarity. For instance the image

at the bottom right hand corner of Figure 5.4 is barely distinguishable from

the original S-Prime image in the top left corner. This is due to the weight

of c1 being set to 0.9, meaning that 90% of the similarity is drawn from the

S-Prime similarity.

Mushroom Data Set

This data set is fully categorical and represents various properties of mush-

rooms and further classifies the mushrooms as either edible or poisonous.

The attributes and their associated ordering is shown in Table 5.7. This

data set has many attributes with a small number of values per attribute.

The largest number of values for any one attribute is for the attribute Gill

Colour which has 9 values. For a full list of attribute values and their

associated vertex numbering, please refer to Table A.4 in Appendix A.

As Figure 5.5 shows, since this data set is categorical, there is a lot

of variation both in the similarity between values within an attribute, and

across attributes. For example, attribute 12 - Stalk Root - shows that the

attribute values all have a reasonably high degree of similarity with one

another. However, attribute 19 - Ring Type - exhibits more numeric quality

with some values being very similar to one other, while very dissimilar to

others.

Attribute Number Attribute Name Attribute Number Attribute Name

1 Class 12 Stalk Root

2 Cap Shape 13 Stalk Surface Above Root

3 Cap Surface 14 Stalk Surface Below Ring

4 Cap colour 15 Stalk Colour Above Ring

5 Bruises 16 Stalk Colour Below Ring

6 Odour 17 Veil Colour

7 Gill Attachment 18 Ring Number

8 Gill Spacing 19 Ring Type

9 Gill Size 20 Spore Print Colour

10 Gill Colour 21 Population

11 Stalk Shape 22 Habitat

Table 5.7: Attribute names and ordering for Mushroom data set.
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Figure 5.4: S
′

and S
′′

weighting comparison for Motivating Example.
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Figure 5.5: A close look at Sij values for selected attributes in Mushroom.
(T = 0.6, c1 = 0.6, c2 = 0.4).
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Figure 5.6: Comparing the simple and multigraph representation of the
Mushroom data set, all attributes.
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As mentioned previously in Section 5.3.2, one of the parameters that can

be used in measuring similarity is the choice of either a simple or multigraph

representation of the data set. Figure 5.6 shows a comparison between these

two representations with all attribute values shown. The left top corner of

the figure shows the S-Prime values for the simple graph version, while the

bottom left corner gives the S-Prime values for the multigraph. Similarly, a

comparison is also shown between the simple and mulitgraph S-Secundum

similarities with a threshold of T = 0.6. In general the S-Prime, S-Secundum

and resultant total similarity are higher for the multigraph representation

than for the simple graph version. In the multigraph version there can also

be a more pronounced difference in similarity values when there are outlier

values, that is, attribute values that do not co-appear with many other

values in the data set.

By examining Figure 5.7 we can better understand the differences be-

tween a Simple and Mulitgraph representation of the data. Figure 5.7 shows

a close up view of the S-Secundum similarities for attribute 10 (Gill Colour)

and attribute 16 (Stalk Colour Below Ring) with a Threshold T = 0.6. The

Simple Graph similarities are shown to the left of the figure, and the Multi-

graph similarities to the right. For attribute 10, there is one attribute value

that is clearly most dissimilar to the other values, this is the value represent-

ing Gill Colour yellow (position 9 in Figure 5.7). Although this attribute

value has a low support in the original data set, with only 22 out 5644 records

containing the value, it is not the only value for this attribute with a low

number of occurrences. The value Gill Colour green (position 5 in Figure

5.7) also has a low number of occurrences, with only 24 out of 5644 records

containing this value. However, this value is shown to be very similar to the

other attribute values, excluding yellow, in Figure 5.7. A similar observation

can be made with attribute 16, whereby the value which is least similar to

all other values, that is, Stalk Colour Below Ring cinnamon (position 6 in

Figure 5.7) has support of 36 out of 5644 records, while value Stalk Colour

Below Ring yellow (position 7) has support of only 8 out 5644 records yet

has higher similarity to several of the other attribute values.

These results would seem to indicate that although values occurring in

a relatively small number of records are more likely to have low similarity
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Figure 5.7: Comparing the simple and multigraph representation of the
Mushroom data set (attributes 10 and 16 S-Secundum T = 0.6).

to other values, there is not a direct correlation between how many times a

value appears in the data set to its similarity value.

Contraceptive Method Choice Data Set

The Contraceptive Method Choice data set is of particular interest since

it exhibits relatively high similarity amongst many of the attribute values,

even when the value of the S-Secundum threshold T is set very high. This

indicates that there is a high degree of connectedness amongst the values in

the data set. Or in other words, most pairs of values share a high number of

neighbours in the graph. For example, if we look at Figure 5.8, we can see
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that for values of T even as high as 0.9 there are very few values that are not

very similar to one another. Only when T = 1.0 do we see any S-Secundum

values fall below 0.5, that is, into the green colour range. As a result, the

choice of the Secundum Threshold will have an important impact on any

resulting partitioning of the values since if all S-Secundum values are equally

high then the only effect they will have on the total similarity is to make

it higher for all attribute values. If there is little variation in S-Secundum

values across all attributes, then we will not gain any benefit by adding the

S-Secundum component to the total similarity. Note that for the results

shown we have used the Simple Graph version of the data set.
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Figure 5.8: S
′′

Threshold T comparison for Contraceptive Method Choice
data set.
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One way in which we can test the effectiveness of our similarity measure

is to observe how it behaves on numerical attributes. In Figure 5.9 there are

two numerical attributes that are easily observed, the first being attribute

1 (Wife’s age) in the very bottom left corner of the images, and the second

being attribute 4 (Number of children ever born) which is the second largest

square just above centre in the images. Note that for both attributes, the

vertex numbering has been applied according to the numerical ordering of

the values. Looking first to attribute 1 (Wife’s age) we see that although

there is a relatively high level of similarity between all values, the values

that are further away from each other numerically are less similar than those

that are close numerically. This effect is seen more obviously for attribute 4

(Number of children ever born) where in the top left and bottom right hand

corners of the attribute’s similarity matrix we see a marked change in the

colour from red to yellow (and even blue for the S-Prime image).

We also note that for the S-Prime similarity (top left hand corner im-

age in Figure 5.9) the last few values for attribute 4 appear to have little

similarity with the other values in the attribute. These values correspond

to the Number of children ever born being above 10, with the highest value

being 16. These values appear in very few records in the original data set,

indeed the value 16 only appears in only one record. Therefore these val-

ues have a low S-Prime similarity as they will have a relatively low number

of neighbours in the graph. However, when the S-Secundum similarity is

calculated there is shown to be a transitive similarity between these values,

and we achieve a more numerical-like similarity pattern when we combine

the S-Prime and S-Secundum similarity, as for example when c1 = 0.5 and

c2 = 0.5, shown as the very middle image in Figure 5.9.

Wisconsin Breast Cancer

The Wisconsin Breast Cancer data set is a numerical data set, with the

attribute ordering and attribute domains provided in Table 5.8. When we

observe the total similarity values based on the parameters T = 0.5, c1 = 0.6

and c2 = 0.4 (Figure 5.10), we see that the attributes do not appear to

exhibit a strong numerical ordering as shown for attributes in the Contra-
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Figure 5.9: S
′

and S
′′

weighting comparison for Contraceptive Method
Choice data set.



5.3. Experiments - Similarity 117

ceptive Method Choice data set. For several of the attributes, (e.g attribute

6 and 9) there are values that appear towards the middle of the attribute

in numerical ordering, yet they are not very similar to other values around

them. For other attributes, (e.g attribute 8), all of the values appear very

similar, with there being only a small colour change distinguishing any of

the values.

Attribute Number Attribute Name Domain

1 Clump Thickness {1,2,3,4,5,6,7,8,9,10}

2 Uniformity of Cell Size {1,2,3,4,5,6,7,8,9,10}

3 Uniformity of Cell Shape {1,2,3,4,5,6,7,8,9,10}

4 Marginal Adhesion {1,2,3,4,5,6,7,8,9,10}

5 Single Epithelial Cell Size {1,2,3,4,5,6,7,8,9,10}

6 Bare Nuclei {1,2,3,4,5,6,7,8,9,10}

7 Bland Chromatin {1,2,3,4,5,6,7,8,9,10}

8 Normal Nucleoli {1,2,3,4,5,6,7,8,9,10}

9 Mitoses {1,2,3,4,5,6,7,8,10}

10 Class {benign,malignant}

Table 5.8: Attribute names and ordering for Wisconsin Breast Cancer data
set.

The implications of these observations is that traditional noise addition

techniques for application to numerical attributes may not be the best choice

for some numerical attributes, such as those in the WBC data set. For this

reason, in Chapter 6, we will further examine this data set by applying our

noise addition technique for categorical attributes to it. We will treat the

discrete numerical values as categories rather than numbers, and apply noise

to the data set as if it were a fully categorical data set.

ACS PUMS

A sample subset of the The American Community Survey (ACS), this data

set is good mixture of categorical and numerical attributes of varying sizes.

A sample of total similarity results for parameters T = 0.75, c1 = 0.6 and

c2 = 0.4 are shown in Figure 5.11.

We remind the reader of the attribute names corresponding to the at-

tribute codes shown in Figure 5.11. Ordered from top left to bottom right,

they are Wages or salary income past 12 months (WAGP), Total person’s
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Wisconsin Breast Cancer
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Figure 5.10: Wisconsin Breast Cancer data set, total similarity for all at-
tributes (T = 0.50, c1 = 0.6, c2 = 0.4).
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Figure 5.11: Sample results for Census PUMS data set (T = 0.75, c1 =
0.6, c2 = 0.4).
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income (PINCP), Usual hours worked per week past 12 months (WKHP),

World area of birth (WAOB), Recoded detailed race code (RACE1P), Means

of transportation to work (JWTR), State Code (ST), Recoded detailed an-

cestry (ANC1P), Age (AGEP), Citizenship status (CIT), Class of worker

(COW), Marital status (MAR) and Educational attainment (SCHL). The

only attribute not shown in Figure 5.11 is Sex (SEX), since it contains only

two values.

The total similarity across all attributes is shown in the image to the top

left hand corner of Figure 5.11, while the S-Prime and S-Secundum values are

shown in the bottom right hand corner. There are several numerical values

worth mentioning here, the first being the two attributes related to income,

WAGP (Wages or income in the past 12 months) and PINCP (Person’s

total income). Both of these attributes exhibit very numerical tendencies

in that values that are close together numerically tend to be more similar

than those that are further apart numerically. However, there is a noted

exception to this rule for the attribute PINCP, since when the income is

below zero these values have very low similarity to values just above zero,

yet appear more similar to high incomes.

Another attribute worth noting is Educational attainment (SCHL), in

the bottom row of Figure 5.11. The values in this attribute appear to

be partitioned into two distinct groups that have a high level of similarity

within a partition, and lower similarity outside of it. The two values at

the boundary of these two groups are values 8 and 9, which correspond to

‘Grade 12 no diploma’ and ‘High school graduate’ respectively. This result

indicates that, based on the subset of attributes in the data set, there is a

strong relationship between having attained a level of education above that

of high school graduate, and also between the levels of education that fall

below this benchmark.

An example of a numerical attribute from the ACS PUMS data set which

does not exhibit a numerical ordering is that of ‘Usual hours worked per week

last 12 months’ (WKHP), shown in the top right hand corner of Figure 5.11.

Although there are quite a few of the values which are numerically close that

also have a high level of similarity, there are also many values which do not

follow this convention. This would seem to indicate that the application of a
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traditional numerical noise addition technique on this attribute could result

in reduced data quality in the perturbed data set. We will now discuss how

best to handle this phenomenon when applying statistical disclosure control

methods in practice.

5.3.4 Numerical Attribute Phenomenon

One of the novel applications of our similarity measure is that we can test

whether numerical attributes really behave in a ‘numeric’ way for the pur-

pose of noise addition. One way in which we can verify the quality of our

similarity measure is to see if numerical attributes behave in such a way that

values that are close together numerically are similar. In our experiments

on several data sets, we observed that many numerical attributes exhibited

this property. However, we also observed that for some numerical attributes,

there did not appear to be such a clear relationship between value closeness

and similarity.

The implications of this observation are that for some numerical at-

tributes on particular data sets, it would not be advisable to add noise in

a traditional numerical way, such as via a normal distribution. In this sit-

uation it may be more advantageous to apply a noise addition technique

more commonly associated with categorical attributes, such as our VICUS

technique presented in Section 6.4.

5.3.5 Ordering Categorical Values

The opposite end of the spectrum to the numerical attribute phenomenon is

the application of an ordering to categorical values. By their very definition,

categorical values have no natural ordering, yet by rearranging the categor-

ical values according to their similarity value we may be able to assign an

ordering to them as well as determining the spacing between categories (e.g.

equal). It would then be possible to apply traditional numerical noise addi-

tion techniques to the data set. The advantage being that these techniques

have been highly studied and are generally easier to apply and computa-

tionally less expensive than categorical techniques.
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An example of an attribute that has had its values reordered according

to the relative similarity values is shown in Figure 5.12. The square to

the bottom left of the figure shows the attribute in its original ordering,

while the top right square shows the attribute values ordered according to

similarities. Clearly this attribute does exhibit some sort of numerical-like

qualities in that values that are situated next to one another appear more

similar than those spaced further away. This application of our similarity

measure will be the subject of future work.
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Figure 5.12: ACS PUMS Attribute World area of birth original and re-
ordered.

5.4 Conclusion

In this chapter we have presented a new similarity measure designed specif-

ically for use on categorical attribute values. The similarity measure aims

to capture the notion of transitive similarity between values of an attribute,

the so called S-Secundum similarity. As the results of experimental anal-

ysis show, our similarity measure is effective in capturing the similarities
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that occur in the database when values co-appear in different records. In

the next chapter we will incorporate our similarity measure into a noise

addition technique for categorical values.



Chapter 6

VICUS - A Noise Addition

Technique for Categorical

Values

All truths are easy to understand once they are discovered; the point is to

discover them.

–Galileo Galilei

Noise addition techniques have traditionally been applied to numerical

values with great success as a means of Statistical Disclosure Control. How-

ever, when the data set contains categorical values the application of these

techniques tends to be much less straightforward [125]. In Chapter 4 we

proposed a framework that can be applied to categorical attributes to best

meet the competing needs of security and data quality. A key component of

this framework is the clustering of categorical values as a way to assign tran-

sition probabilities to the attribute values. In this technique values will be

changed to other values in the same cluster with a much higher probability

than they will change to a value in a different cluster.

In this chapter we propose a noise addition technique for categorical

values which incorporates our similarity measure from Chapter 5 and assigns

124
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transition probabilities based on the discovered clusters of attribute values.

We also provide an analysis of experimental results to see how well our

technique performs in the conflicting areas of security and data quality.

6.1 Motivating Example

Recall our Motivating Example lecturers data set from Section 5.1 in Chap-

ter 5. Having evaluated the similarity values for the attributes in this data

set, we are now faced with the problem of how best to partition the values so

as to maximise similarity within a partition, and minimise similarity across

partitions. Although it is not difficult to define a maximisation function

that will indicate the quality of a selected partitioning of the graph, it is

more difficult to decide how best to arrive at an optimal solution.

6.2 VICUS - Noise Addition Technique

We have named our noise addition technique VICUS, after the Latin word

which loosely translates as village 1. This is to reflect the underlying moti-

vation for our similarity measure presented in Chapter 5.

Noise is added to a data set by applying the following three steps.

• Step 1: We partition the graph using the similarity measure for values

within an attribute. We use a genetic algorithm to explore the solution

space and arrive at a close to optimal partitioning of the graph.

• Step 2: Using the partitioning of the graph obtained from Step 1,

we generate a transition probability matrix for all attribute values.

The transition matrix gives the probabilities of each attribute value

changing to every other value within the attribute.

• Step 3: We perturb each individual in the original data file by apply-

ing the transition probabilities to determine which value the original

1http://en.wiktionary.org/wiki/vicus



6.2. VICUS - Noise Addition Technique 126

value becomes in the perturbed file. Noting that the value will gen-

erally have a relatively high probability of remaining the same in the

perturbed file.

We next describe each of the steps in more detail.

6.2.1 Graph Partitioning

We now define the graph partitioning problem as presented in Bui and Moon

[18]. Given a graph G = (V,E) on n vertices and e edges, we define a parti-

tion P to consist of disjoint subsets of vertices of G. The cut-size of a par-

tition is defined to be the number of edges whose end-points are in different

subsets of the partition. A balanced k-way partition is the partitioning of

the vertex set V into k disjoint subsets where the difference of cardinalities

between the largest subset and the smallest one is at most one. The k-way

partitioning problem is the problem of finding a k-way partition with the

minimum cut-size [18]. We relax the condition of difference of partition sizes

being at most 1, and we impose a lower bound on the minimum size of the

partition minS. The k-way partitioning problem has been well studied and

has been shown to be NP -complete in both the balanced and unbalanced

form [49, 18]. Hence, we will apply a heuristic, namely a genetic algorithm,

to solve the problem of moving from one solution to the next. Please note

that in what follows we use “partitioning” to mean a collection of disjoint

subsets whose union gives the original set, and we use “partition” to denote

each such “subset”.

Genetic Algorithm

A genetic algorithm starts with a set of initial solutions (chromosomes),

known as a population. A series of functions are then performed over typi-

cally many iterations (generations) in an attempt to advance the quality of

the candidate solutions. Once finished the best solution from the population

is chosen as the final solution [18].

A single iteration proceeds as follows. Two members of the population
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(parents) are chosen based on some fitness criteria. Then they are combined

using a crossover function to produce a new solution (offspring). With some

low probability this offspring is then modified using a mutation operator,

potentially allowing the solution to climb out of a local maximum and pro-

vide a better chance of reaching the global maximum. The offspring is then

tested to see if it is suitable to be added to the population and a replacement

method is used to select the member of the population to be replaced. We

then start a new iteration and continue until some stopping criteria is met.

This type of genetic algorithm, which produces only one new solution per

generation, is known as a steady-state genetic algorithm [18]. The pseudo

code for this algorithm, as stated in Bui and Moon [18], is as follows

create initial population of fixed size;

do {

choose parent1 and parent2 from population;

offspring = crossover(parent1,parent2);

mutation(offspring);

if suited(offspring) then replace(population, offspring);

} until(stopping condition); report the best answer;

When setting the initial population before the first iteration of the algo-

rithm for our graph partitioning problem, we generate a user defined number

of partitions. Care is taken to ensure that the partitions within the solution

all have at least the minimum number, minS, of values per partition. The

minimum partition size, minS, is a user defined parameter.

At the parent selection step, a fitness function is used to select the two

parent chromosomes used to create the next generation. The fitness of a

chromosome is given by

Fc =
Atts∑

k=1

Fi (6.2)

where Atts is the number of attributes in the data set, and

Fi =
numV als∑

i

numV als∑

j

(SSame
ij − SDiff

ij ) (6.3)
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where

numV als - the number of values in attribute k,

SSame
ij - the sum of total similarities Sij within the same partition,

SDiff
ij - the sum of total similarities Sij across the partition,

Sij is the similarity between value i and j, which has been centred

around 0 by subtracting the median total similarity value from all

similarities.

The proportional selection fitness Fps of the chromosome is given by

Fps = (Fw − Fc) + (Fw − Fb)/3 (6.4)

Where

Fw is the fitness of the worst solution in the population,

Fb is the fitness of the best solution in the population,

Fc is the fitness of chromosome c.

Each chromosome is selected as a parent with a probability that is pro-

portional to its fitness value. Hence, the probability that the best chro-

mosome is chosen is four times as high as the probability that the worst

chromosome is chosen. This type of selection scheme is called proportional

selection [18].

A crossover operator creates a new offspring by combining parts of the

two parent chromosomes.

The mutation operator is applied as follows, m positions on the chro-

mosome are selected at random and their values are randomly changed to

another partition, where m is a uniform random integer variable on the in-

terval [0, ⌊n/100⌋]. Once this mutation is applied we have to ensure that

the partitions do not become too unbalanced, that is, that no partition has

a size less than minS. To do this select a random point on the chromosome

and change the required number of values starting at that point and mov-

ing to the right, wrapping if needed. This process will also produce some

additional mutation [18].

A balance between population diversity and reasonable running time
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needs to be found. First an attempt is made to replace the parent with the

fitness below that of the child, if the parents both have a higher fitness than

the child, replace the chromosome with the worst fitness.

The stopping criterion used is to stop when either the number of itera-

tions reaches a user defined level, or the overall fitness of the population has

reached a status quo.

6.2.2 Transition Probability Matrix

When deciding how much noise to add when we perturb a data set, we must

decide on how best to distribute the transition probabilities amongst the

possible choices. Note that we define two separate methods for defining the

transition probabilities, the first being our VICUS method, and the second

being a method we term Random, which is used to evaluate the effectiveness

of the VICUS method. We next describe both of them in more detail.

VICUS Method

Given a partitioning P of the original data set which divides all possible

values into k disjoint sets, we calculate the transition probabilities for each

attribute individually. We define the notation as follows

A - the set of values of attribute A.

PA ⊂ P- a partitioning - a collection of disjoint subsets (some of which

may be empty) of A such that
⋃k

i=1 = A.

PA = {A1, A2, · · · , Ak}
S - the partition from PA containing an attribute value, ai ∈ A.

S ′

= PA \ S - the relative compliment set containing all other partitions.

PA = S ∪ S ′

The define the transition probabilities for an attribute value, ai, as fol-

lows

Ps + Psp + Pdp = 1 (6.5)
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where Ps is the probability of an attribute value remaining unchanged,

Psp = (|S| − 1)× psp (6.6)

where psp is the probability that an attribute value is changed into a different

attribute value from the same partition, and |S| is the number of attribute

values in the partition containing the value ai.

Pdp = |S ′ | × pdp (6.7)

where pdp is the probability that the value ai changes to a value from a

different partition and |S ′ | is the number of attribute values that are in a

different partition to ai.

We now introduce two parameters that allow the data manager to adjust

the amount of noise to be added to the microdata file. The first parameter,

k1, is defined such that an attribute value ai is k1 times more likely to stay

the same than to change to another value in the same partition. The second

parameter, k2, tells us how many times more likely a value ai is to change

to another in the same partition than one in a different partition. Hence,

we can reformulate our probabilities as

Ps = k1 × psp = k1 × k2 × pdp (6.8)

and Equation 6.4 becomes

Ps + (|S| − 1)× Ps

k1
+ |S ′ | × Ps

k1 × k2
= 1

From the above, the probability that a value remains the same becomes

Ps =
k1 × k2

k1 × k2 + k2 × (|S| − 1) + |S ′ | (6.9)

The probability of a value changing to another in a different partition

becomes

pdp =
1

k1 × k2 + k2 × (|S| − 1) + |S ′ | (6.10)

The probability that a value changes to another in the same partition
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becomes

psp =
k2

k1 × k2 + k2 × (|S| − 1) + |S ′ | (6.11)

Random Method

We also define a set of transition probabilities for the method we term Ran-

dom. This method does not assign probabilities for Psp and Pdp, but rather

introduces the probability of a value changing to any other value in the

attribute, which is denoted Pc. However, it still uses Equation 6.8 to calcu-

late the probability of a value remaining unchanged in the perturbed data

set. We define the probability of a value changing to any other value in the

attribute as follows

Pc =
1− Ps

|S|+ |S ′ | − 1
(6.12)

The resulting method will perform better than a truly random method,

as it is imparting some of the information from our partitioning of the values

when calculating the value for Ps. However, to evaluate the quality of our

method we need to perturb the ‘random’ in such a way as to be able to

compare the results of our security measure and data quality tests.

6.2.3 Perturbing Microdata File

Once the transition probability matrix has been generated for each attribute,

the next step is to simply perturb the original microdata file according to the

transition probabilities assuming that a random value is drawn to decide if

the value changes to another value in the same partition, one from a different

partition, or remains unchanged.

6.3 Evaluation Methods

We now need to define the evaluation of how well our noise addition tech-

nique meets the conflicting goals of security and data quality. In evaluating

the security of a perturbed data set we assume that the intruder is aware
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of the exact perturbation technique and we apply an information theory en-

tropy [107] measure to estimate the amount of uncertainty the intruder has

about the identity of a record as well as the value of a confidential attribute.

We apply two techniques to gauge how well our noise addition technique

preserves the underlying data quality, the first is a decision tree classifier,

and the second is the chi-square statistic test.

6.3.1 Security Measure

One way in which we can measure the security of a released microdata file is

by estimating how sure an intruder is that they have identified a record, and

more importantly the correct confidential value for that record. To gauge the

amount of uncertainty an intruder has about having identified a particular

record in the perturbed microdata file, we calculate the entropy for this

record. Similarly, by calculating the entropy of a confidential value we can

estimate the amount of uncertainty the intruder has that the value was the

same value in the original microdata file. We assume that there is only one

confidential or sensitive attribute in the microdata file; it is straightforward

to generalise the following method to a case where there is more than one

confidential attribute. Let us assume that an intruder knows how noise has

been added in order to perturb the released microdata file; the intruder also

knows one or more attribute values from a particular record that they are

interested in and they wish to learn the confidential value for this record.

We assume that an intruder only has access to the perturbed and not

the original microdata file. We further assume that the intruder is trying to

compromise one particular record in the database and that they know the

original values of some or all non-confidential attributes for that record. We

calculate the entropy of a record H(P ) according to Algorithm 6.1, where

the following notation is used:

Ax is the perturbed value of attribute A in record x;

O(Ax) is the original value of attribute A in record x;

VA is the original value of attribute A known to the intruder;

p(VA = O(Ax)) is the probability that VA is the perturbed value of

attribute A known to the intruder;
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px is the probability that record x is the record that contained

VA in the original file.

Input: Transition Probability matrix M , Perturbed microdata file

P , Attribute value VA ∈ A for each attribute A known to the

intruder

Output: H(P ) entropy

initialise sump to 0;

for each record x in P do
initialise px to 1;

for each attribute A for which the intruder knows VA do

/* Product of the probability that VA in O became

Ax in P, taken over all attributes with values

known to the intruder */

px = px × p(VA = O(Ax));

end

sump = sump + px;

end

for each record x in P do

/* normalise the value of px to between 0 and 1 */

px = px/sump;

end

/* Now calculate the entropy of the record */

H(P ) =
∑|P |

1 pxlog2
1
px

;

return H(P );

Algorithm 6.1: Calculating entropy of a record in perturbed micro-

data file.

We calculate the entropy H(D) for the confidential value VC according

the Algorithm 6.2. The entropy will show how much uncertainty the intruder

has about the confidential value VC for record x that they are trying to

compromise. We use the following notation:

Cx is the perturbed value of the confidential attribute C in record x;

p(ci = O(Cx)) is the probability that confidential value Cx in the

perturbed file originated from the value ci in the original file.
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Input: Transition Probability matrix M , Perturbed microdata file

P , Probabilities px for all records (from Algorithm 6.1)

Output: H(D) entropy

for each value ci ∈ C do
initialise probability Di to 0;

end

for each record x in P with Cx for C do

for each confidential value in ci ∈ C do

/* Sum the probability that Cx in P originated from

ci */

/* in O and multiply by the probability that */

/* record x is the record the intruder ‘knows’ */

Di+ = p(ci = O(Cx))× px;

end

end

/* Now calculate the entropy of the confidential value Vc

*/

H(D) =
∑|C|

1 Dilog2
1

Di
;

return H(D);

Algorithm 6.2: Calculating entropy of confidential attribute in per-

turbed microdata file.

When we run experiments on our test data sets, we will compare the

entropies for when the user knows 1, 2 and 3 attribute values for a record in

the original file. We also compare these results to the ‘worst case scenario’

of when the intruder knows all attribute values for a record excluding the

confidential value.

6.3.2 Data Quality

As discussed in Section 3.5, information loss is an important consideration

when evaluating the quality of a perturbation technique [116]. Ideally the

goal of the data manager is to minimise the reduction in data quality while

at the same time maximise the security of released data. In order to evaluate

how our method performs in terms of information loss we present two differ-
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ent methods of evaluating the quality of the perturbed data files. The first

method is to apply a decision tree builder on both the original and perturbed

data sets and compare the classification errors. The second method is to

apply a chi-square statistical test to both the original and perturbed data

sets to ascertain how successfully VICUS preserves the underlying statistics

from the original data set. We now describe each technique in more detail.

Decision Tree Classification

Several of the data sets that we have selected for experimental analysis were

originally designated as classification data sets. In data mining, classification

is a process of assigning a record to a class based on the values of the one or

more attributes in the record [60]. One example of a class attribute in the

data sets we introduced in Section 5.3.1 is the classification of mushrooms

into either poisonous or edible. This indicates that a good way to test if

our method preserves the underlying data quality would be to compare the

classification results for the original data sets with those of the perturbed

data sets.

According to Rokach, a decision tree is “a classifier expressed as a re-

cursive partition of the instance space” [105]. The partitioning occurs at

nodes in the tree, whereby a discrete function of the input attribute values

causes the tree to branch into two or more sub-nodes [105]. The tree is di-

rected, with the root node being the node with no edges entering it. In the

top down approach to decision tree building the algorithm generally starts

with all training instances at the root node, and then recursively partitions

based on selected attribute values, or ranges in the case of numerical val-

ues [105, 60]. The selection of the test attribute is generally based on some

heuristic or a statistical measure such as information gain, as with Quinlan’s

C4.5 algorithm [103] which is implemented in WEKA as the J48 algorithm

[128].

We use the WEKA J48 decision tree builder [128, 129] on the original and

perturbed microdata files and compare the percentage of incorrectly classi-

fied instances to assess the quality of our noise addition technique. When

evaluating the quality of the decision trees for the perturbed data, we use the
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perturbed file as the ‘training’ data set, and the original microdata file as the

‘testing’ set. To evaluate the quality of the decision tree produced from the

original data sets, we use the “k-fold cross-validation” method [59], and we

also evaluate the misclassification when the decision tree is both trained and

tested on the original data set. The k-fold cross-validation method first par-

titions the original data set into k disjoint subsets, (S = {S1, S2, . . . , Sk}),
also know as ‘folds’ [59]. The method then performs k iterations to itera-

tively build the classification tree, where in the ith iteration, the subset Si

is kept aside as the training set, and the tree is built on the the remaining

S \ Si records [59]. The overall classification error is given by dividing the

total number of misclassified records for all iterations, by k.

Chi-square Test

The chi-square test is a commonly applied statistical measure for deter-

mining the statistical significance of an association between two categorical

attributes [67]. We follow the five step approach to determining statistical

significance as outlined by Utts and Heckard [67, p.184].

• Step 1: Determine the null and alternative hypotheses.

• Step 2: Summarise the test statistic after verifying any necessary

conditions (such as data set size).

• Step 3: Determine the p-value on the assumption that the null hy-

pothesis is true.

• Step 4: Determine any statistical significance according to the p-

value.

• Step 5: Report the conclusion.

Note that our aim here is not to determine if there is any statistical sig-

nificance of the attribute associations studied, rather we aim to determine

that any such significance is undisturbed by our perturbation method. How-

ever, we will approach the analysis in a manner consistent with the above

outlined steps.
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Program
Computer Science Mathematics Medicine Total

Prof. K. White 1 0 0 1
Dr J. Black 2 0 0 2
Dr H. Pink 0 1 0 1

Lecturer Dr M. Brown 0 1 0 1
Prof. T. Green 0 0 1 1

Dr D. Blue 0 0 1 1
Total 3 2 2 7

Table 6.1: Lecturer Microdata File - Sample

We will analyse our data set in the form of two-way contingency tables,

which count the co-occurrence of a categorical value from one attribute with

a value in another attribute, for all combinations of values. For instance,

if we consider our Motivating Example in Section 5.1, Table 6.1 shows the

contingency table for Attribute 1 and 2. We consider the null and alternative

hypotheses about categorical data presented in a two-way contingency table

as

H0 : The two variables are not related

Ha : The two variables are related

where H0 is the null hypothesis, and Ha is the alternative hypothesis [67,

p.528].

Since we are dealing with categorical data specifically, and all of our

experimental data sets have been perturbed under this assumption, a natural

choice for a test statistic, as outlined in Step 2, is the chi-square statistic.

The chi-square statistic measures the difference between the observed counts

in the contingency table and the so-called expected counts, which are those

that would occur if the there was no relationship between the two categorical

variables. The general form of the chi-square statistic (χ2) (also referred to

as Pearson’s Chi-Square) is given in Equation 6.12, the notation is the that

used in [67].

χ2 =
∑

i,j

(Oij − Eij)
2

Eij
(6.13)
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where

Oij - the observed count for the i, jth cell of the contingency table

Eij - the expected count for the i, jth cell of the contingency table

if there were no relationship between the two variables

Ri - row sum for ith row of contingency table

Cj - column sum for jth column of contingency table

n - total cell count

r - number of rows

c - number of columns

Eij =
RiCj

n
- expected count for cell i, j

An alternative statistic is the Likelihood Chi-Square statistic shown in

Equation 6.13

χ2
LR = −2

∑

i,j

Oij ln
Eij

Oij

(6.14)

For large data sets the values of χ2 and χ2
LR should be comparable. The

same method is used to compare these statistics to the p-value to evaluate

the correctness of the null hypothesis.

An important necessary requirement for the application of the chi-square

test on a data set is that the data is large enough to be able to give a

reasonable approximation. According to Utts and Heckard [67], a commonly

applied guideline which satisfies this co-called “large” sample requirement

is for all expected counts to be larger than 1, and for at least 80% of cells

in the contingency table to have an expected count larger than 5.

Once we have calculated the chi-square statistic for a pair of attributes,

we need to apply Step three of our statistical method, that is, we need to

determine the p-value under the assumption that the null hypothesis, H0,

is true. The p-value is “the probability that the chi-square statistic could

have been as large or larger if the null hypothesis were true” [67, p.533].

This value equates to the area under the chi-square distribution with df

degrees of freedom. The degrees of freedom (df) for both χ2 and χ2
LR is

(r − 1)(c − 1). Once the p-value has been determined for the calculated

chi-square statistic, we need only compare this value to the critical value
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at the set degrees of freedom. This is the value that the p-value must be

below for there to be a reasonable significance level α. A generally accepted

significance level would be α = 0.05. This signifies that there is less than

a 5% chance that the relationship between the two variables occurred by

chance. When the p-value is less than α we say that the null hypothesis can

be rejected, and there is a relationship between the two variables.

6.4 Experiments - Noise Addition

From the data sets examined in Section 5.3, where we looked at experimen-

tal results for our similarity measure, we have selected two to run further

experiments to illustrate the quality of our VICUS noise addition technique.

Mushroom Data Set

The Mushroom data set is a fully categorical data set, so is very suitable

for the analysis of our technique. In addition, the data set is a classification

data set, so is particularly relevant for the testing of data quality via the

techniques we have selected.

In preparing our experiments we generated a multigraph from the origi-

nal data set. The genetic algorithm and similarity measure parameters used

in the running our partitioning technique are as follows

• Initial population size: 50

• Number of partitions k: 6

• Minimum partition size (minS): 6

• Number of cut-points: 5

• Maximum number of iterations: 100,000

• S-Secundum threshold T : 0.65

• S-Prime weighting c1: 0.6

• S-Secundum weighting c2: 0.4
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The genetic algorithm was run 30 times and the partitioning with the

largest fitness function was selected as the solution partitioning. Recall that

we use the term “partitioning” (PG) to denote a collection of disjoint subsets

of the vertex set V , such that the union of all the subsets gives the set V .

We use the term “partition” to refer to such a subset. Thus we have :

PG = {P1, P2, . . . , Pk}

Pi ∪ Pj = ∅

for all 1 ≤ i, j ≤ k and
k⋃

i=1

Pi = V

The solution partitioning is shown below. The top row of each partition

shows the vertex labelling, and the bottom row the attribute number that

this value belongs to in the data set.

Partition 1 labels: [ 11 19 21 23 24 25 26 27 29 30 36 37 38 39 41

attrib: [ 3 4 5 6 6 6 6 6 6 7 10 10 10 10 10

42 43 46 48 50 55 74 77 78 91 ]

10 10 11 12 12 14 17 18 19 21 ]

Partition 2 labels: [ 8 12 20 40 52 53 54 60 61 66 67 68 69 70 81 93 ]

attrib: [ 2 3 4 10 13 13 13 15 15 16 16 16 16 16 19 21 ]

Partition 3 labels: [ 2 7 15 33 35 65 75 76 82 97 ]

attrib: [ 1 2 4 8 9 15 18 18 20 22 ]

Partition 4 labels: [ 6 31 32 45 64 92 ]

attrib: [ 2 7 8 11 15 21 ]

Partition 5 labels: [ 9 10 16 17 18 44 71 73 79 80 83 84 85 86 87 98 ]

attrib: [ 3 3 4 4 4 10 16 17 19 19 20 20 20 20 20 22 ]

Partition 6 labels: [ 1 3 4 5 13 14 22 28 34 47 49 51 56 57 58 59 62 63

attrib: [ 1 2 2 2 4 4 5 6 9 12 12 13 14 14 14 15 15 15
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72 88 89 90 94 95 96 99 ]

16 21 21 21 22 22 22 22 ]

We next selected five different combinations of parameters for the tran-

sition probability generation, which are shown in Table 6.2. For each pa-

rameter selection we perturbed 30 files according to the generated transition

probabilities.

Perturbation k1 k2

Mush1 2 20

Mush2 5 20

Mush3 10 10

Mush4 10 20

Mush5 10 50

Table 6.2: Probability parameters for perturbations on Mushroom data set

Wisconsin Breast Cancer data set

The Wisconsin Breast Cancer (WBC) data set has been selected because

it is a classification data set, which will be useful when we want to evaluate

how our perturbation technique impacts on quality of the released data

set. It also has a manageably small number of attributes (10 including

the class attribute) and distinct attribute values (91). Note that although

this data set consists of discrete numerical values, for the purpose of these

experiments we will treat the data set as if it were fully categorical. That is,

every distinct discrete numerical value will be converted into a categorical

value for the purposes of noise addition. However, once perturbed, we will

again be treating the data set as numerical when running a decision tree

builder on the data sets to evaluate the quality of our VICUS noise addition

technique.

In preparing our experiments we generated a simple graph from the

original data set. The genetic algorithm and similarity measure parameters

used in the running our partitioning technique are as follows

• Initial population size: 50
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• Number of partitions k: 10

• Minimum partition size (minS): 4

• Number of cut-points: 5

• Maximum number of iterations: 100,000

• S-Secundum threshold T : 0.5

• S-Prime weighting c1: 0.6

• S-Secundum weighting c2: 0.4

The genetic algorithm was run 30 times and the partitioning with the

largest fitness function was selected as the solution partitioning. This par-

titioning is shown below. The top row of each partition shows the vertex

labelling, and the bottom row the attribute number that this value belongs

to in the data set.

Partition 1 labels: [ 13 14 15 16 17 18 20 22 23 24 25 26 27 28 30 39 42

attrib: [ 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 5

43 44 45 46 47 48 50 59 62 63 64 65 66 67 68 70 71

5 5 5 5 5 5 5 6 7 7 7 7 7 7 7 7 8

73 78 80 88 91 ]

8 8 8 9 10 ]

Partition 2 labels: [ 51 53 55 60 79 ]

attrib: [ 6 6 6 6 8 ]

Partition 3 labels: [ 19 37 56 75 85 ]

attrib: [ 2 4 6 8 9 ]

Partition 4 labels: [ 1 3 4 5 6 7 8 10 54 69 ]

attrib: [ 1 1 1 1 1 1 1 1 6 7 ]
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Partition 5 labels: [ 35 58 76 81 82 83 84 ]

attrib: [ 4 6 8 9 9 9 9 ]

Partition 6 labels: [ 9 21 72 87 ]

attrib: [ 1 3 8 9 ]

Partition 7 labels: [ 36 41 52 74 ]

attrib: [ 4 5 6 8 ]

Partition 8 labels: [ 29 31 32 33 34 40 77 86 ]

attrib: [ 3 4 4 4 4 4 8 9 ]

Partition 9 labels: [ 11 12 38 49 89 ]

attrib: [ 2 2 4 5 9 ]

Partition 10 labels: [ 2 57 61 90 ]

attrib: [ 1 6 7 10 ]

We next selected five different combinations of parameters for the tran-

sition probability generation, which are shown in Table 6.3. For each pa-

rameter selection we perturbed the original microdata file 30 times to create

30 perturbed files according to the generated transition probabilities.

Perturbation k1 k2

WBC1 2 2

WBC2 2 10

WBC3 2 50

WBC4 5 20

WBC5 10 10

Table 6.3: Probability parameters for perturbations on Wisconsin Breast
Cancer data set
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6.4.1 Security

As outlined in Section 6.3.1 we evaluate the security of our noise addition

technique using entropy. For each data set we chose an attribute to be the

confidential attribute C. We calculated the entropies for the situation when

the user knows one, two and three attributes, and also when the user knows

all attributes excluding the confidential one, to give a comparison ‘worst

case scenario’ result.

For each of the 30 perturbed files, we averaged the entropies over all

records and all files for when the intruder knows one attribute value.

Mushroom Data Set

The results for the record entropies for the case when the intruder knows

1 attribute value for a record are shown in Table 6.4, Entropies for the

corresponding confidential attribute are shown in Table 6.5.

Perturbation k1 k2 VICUS Random

Mush1 2 20 11.9720 12.0074

Mush2 5 20 11.7502 11.7316

Mush3 10 10 11.6141 11.5772

Mush4 10 20 11.5826 11.5487

Mush5 10 50 11.5567 11.5284

Table 6.4: Average record entropy for Mushroom perturbations, intruder
knows 1 attribute.

Perturbation k1 k2 VICUS Random

Mush1 2 20 2.0743 2.4496

Mush2 5 20 1.8778 2.1962

Mush3 10 10 1.8280 2.0036

Mush4 10 20 1.7220 1.9450

Mush5 10 50 1.6409 1.9045

Table 6.5: Average confidential attribute entropy for Mushroom perturba-
tions, intruder knows 1 attribute.

In Figure 6.1 we can see how the entropy drops when the user learns more
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attribute values for a particular record. We have selected for comparison

the two perturbations that gave the highest and lowest entropy results on

average, that is Mush1 (k1 = 2, k2 = 20) and Mush5 (k1 = 10, k2 = 50).

Note that the dotted lines shown in this figure are only designed as a guide

as to indicate the position of the next value, and there has been no form of

extrapolation performed on this figure or others of a similar vein. Figure

6.1 shows that when the user knows only a few attributes, the difference

in security between the VICUS and Random methods is minimal. When

the user knows all 21 non-confidential attribute values for one record, the

record entropy drops significantly and the VICUS method outperforms the

Random method.
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Random (k1=10, k2=50)

Figure 6.1: Comparing record entropy to the number of attributes known
by intruder, Mushroom data set.

When analysing the confidential entropies in terms of the number of at-
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tribute values known to the intruder, as shown in Figure 6.2, there is little

change in the entropy for the Mush1 perturbation, while for Mush5 the Ran-

dom method entropy drops away more quickly than for the VICUS method

as the intruder’s knowledge of all 21 non-confidential attribute values grows.
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Random (k1=10, k2=50)

Figure 6.2: Comparing confidential attribute entropy to the number of at-
tributes known by intruder, Mushroom data set.

We are also interested to know if certain attributes are more or less re-

vealing than others, that is, if they yield a lower or higher entropy than

average. Figure 6.3 shows the entropies for when an intruder knows 1 at-

tribute value, and compares the average entropy for different attributes.

Note that attribute 2 is not shown as it is the confidential attribute. There

is relatively small variation in the confidential entropy regardless of which

attribute the user knows a value for. While for the record entropy, we can

clearly see that some attributes are more sensitive than others. The most
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revealing attribute is attribute 3 (Cap Surface), while the least revealing is

attribute 17 (Veil Colour). Figure 6.4 provides a more close up view of the

entropies for each individual attribute, and also compares the entropies for

the VICUS and Random methods. We show the maximal entropy value,

that is, the value that the entropy would be if all attribute values were

equally likely in the perturbation (log25644). For attribute 7 and 17 the

average values are extremely close to this indicator. This is due to the fact

that both of these attributes contain only two values which fall into differ-

ent partitions in the graph partitioning P, so when perturbing these values

there is no probability that a value will change to another value in the same

partition.
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Figure 6.3: Entropy sensitivity for when the user knows 1 particular at-
tribute, Mushroom data set.

For the confidential value entropy, it is not so obvious from Figure 6.5
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Figure 6.4: Record entropy sensitivity for when the user knows 1 particular
attribute, Mushroom data set.
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which attributes are the most and least revealing. However, attribute 1

(Class) is the least revealing, with the highest average entropy for the VICUS

method, and attribute 21 (Habitat) is the most revealing with the lowest

average entropy. With an overall average entropy of 1.6409 for the VICUS

method, the perturbation Mush5 is not ideal as there is little uncertainty

for the intruder about the true value of the confidential attribute.
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Figure 6.5: Confidential entropy sensitivity for when the user knows 1 par-
ticular attribute, Mushroom data set.

We next want to demonstrate that there is very little variation between

the average entropies when the user knows a particular number of attribute

values for files perturbed via the VICUS method. Note that we do not

show a similar comparison for the confidential attributes since there is even
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less variation for those entropy results. Figure 6.6 shows the distribution of

the results across all 30 Mush5 files perturbed via the VICUS method, for

when the user knows three attribute values in a record. Note that due to

the large number of combinations when we are choosing 3 attributes from

21, we randomly selected 100 attribute combinations for the 3 attribute

entropy analysis on the Mushroom data files. Similarly, Figure 6.7 gives the

distribution when the user knows 2 attribute values for a particular record.

8 8.5 9 9.5 10 10.5 11 11.5 12
0

5

10

15

20

25

30

Mushroom − Mush5
Distribution of record entropies for VICUS

Intruder knows 3 attributes.

Figure 6.6: Distribution of record entropies when user knows 3 attributes
for each individual attribute combination, Mushroom data set.

We also examine the distribution of the record entropies over the 30

perturbed files rather than according to which attribute value the intruder

knows. In Figure 6.8 we can see that there is only a very small variation
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Figure 6.7: Distribution of record entropies when user knows 2 attributes
for each individual attribute combination, Mushroom data set.
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between any of the 30 perturbed files when the intruder knows one attribute

value for a particular record. This indicates that there is only a small vari-

ation in the relative security of any of the files perturbed via the VICUS

method. To gain a better understanding of the overall trend in distributions

based on the number of attribute values known to the intruder refer to Fig-

ure 6.9, which comapres the distributions for 1, 2 and 3 attributes values.

Note that for when the user knows only one attribute value the distribution

falls into a smaller range of values.

11.5545 11.555 11.5555 11.556 11.5565 11.557 11.5575 11.558 11.5585
0

2

4

6

8

10

12

Distribution of record entropies for VICUS
Average over 30 perturbed files.

Intruder knows 1 attribute

entropy

su
pp

or
t

Figure 6.8: Distribution of record entropies when user knows 1 attribute,
averaged over the 30 perturbed files, Mushroom data set.

The final comparison we make for the Mushroom data files is to examine

how the VICUS method performs against the Random method for different
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Figure 6.9: Distribution of record entropies when user knows 1, 2 and 3
attributes, averaged over the 30 perturbed files, Mushroom data set.
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choices of the k1 and k2 transition probability parameters. Recall that k1 is

how many times more likely a value is to remain unchanged than to change

to another value in the same partition, and a value is k2 times more likely to

change to a value in the same partition than one in a different partition. The

bottom left hand image in Figure 6.10 fixes the values of the k2 parameter,

and shows how a variation in the k1 parameter impacts on record entropies.

Note that when the value of k1 increases we see a slight drop in the entropy,

and hence a slight drop in the security of the perturbed microdata file since

the intruder has less uncertainty about which record in the perturbed file

is the one containing the value he knows. We also note that for all three

values of k1 there is little difference between the average entropy for the

files perturbed via the VICUS method and those perturbed via the Random

method.

We now examine the bottom right hand image of Figure 6.10 to see

how changing the value of k2 while fixing the value of k1 effects the record

entropy. By having a relatively high value of k1 we see little change in the

entropy when we increase the value of k2 since the amount of uncertainty

is already quite low. Setting a higher value for k1 will result in a higher

probability of a value staying the same in the perturbed file, leading to less

uncertainty about what the attribute value was in the original file.

Wisconsin Breast Cancer Data Set

For the Wisconsin Breast Cancer data set we have set attribute 1 (Clump

Thickness) as the confidential attribute that the intruder is trying to uncover

the value of in a particular record that they have supplementary knowledge

for. Table 6.6 gives a summary of the average record entropies for the differ-

ent k1 and k2 parameter choices, and Table 6.7 has the average confidential

entropies for the same parameters. The top two images in Figure 6.10 also

show how a change in one of the transition probability parameters effects

the record entropy in the perturbed file. It is interesting to note that when

comparing the product on k1 and k2, in the top right hand image in Figure

6.10, having a small value for k1 and a large value for k2 provides the highest

level of security on average.

We provide a similar set of diagrams for the Wisconsin Breast Cancer
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Figure 6.10: Record entropy comparison for WBC and Mushroom data sets.
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Perturbation k1 k2 VICUS Random

WBC1 2 2 9.2294 9.2447

WBC2 2 10 8.9207 8.9379

WBC3 2 50 8.7131 8.7897

WBC4 5 20 8.4995 8.5186

WBC5 10 10 8.3135 8.3195

Table 6.6: Average record entropy for WBC perturbations, intruder knows
1 attribute..

Perturbation k1 k2 VICUS Random

WBC1 2 2 3.3212 3.3216

WBC2 2 10 3.2964 3.3166

WBC3 2 50 3.2481 3.3052

WBC4 5 20 3.2434 3.2884

WBC5 10 10 3.2184 3.2483

Table 6.7: Average confidential attribute entropy for WBC perturbations,
intruder knows 1 attribute.

data set as for the Muchroom data set in Section A.5.1 of Appendix A.

Having already discussed the results for the Mushroom data set, there is

little to be gained by examining these figures in detail since they show very

similar results.

6.4.2 Data Quality

We now present the experimental results for the data quality tests which

were outlined in Section 6.3.2, that is, decision tree classification and Chi-

square statistics testing.

Decision Tree Results

We use the WEKA software package [128] to test how well our perturbed

data sets maintain their underlying data model when compared to the orig-

inal data sets. The particular decision tree builder that we used was J48
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decision tree builder, which is WEKA’s implementation on the C4.5 decision

tree builder [128]. For an explanation of the algorithm employed, we refer

the reader to Section 6.3.2. The parameters that we used for the decision

tree builder on all data sets tested are shown in the following list.

• To gauge the accuracy of a classification model built from the original

data sets, we used the k-fold cross validation method and noted the

predictive accuracy of the model. We also trained a decision tree

on the original data set, and then tested the same data set against

the model to evaluate how accurately it classified the instances. This

second method also allows us to visualise the decision tree trained on

the whole of the original data set.

• When testing the relative quality of the decision trees trained on the

perturbed microdata files, we use the original data set for testing pur-

poses. We note the percentage of incorrectly classified instances, and

then compare this result to that obtained for decision tree trained on

the original data set. As an additional comparison, the decision tree

trained on the perturbed file, the same perturbed data file was also

used as the testing data set to evaluate how accurately it classifies the

instances from the same data set.

• In the parameter selection for the J48 decision tree builder in WEKA

[129], the binary split option was selected, so that each inner node

of the decision tree has exactly two children (e.g. val and !val). For

categorical attributes, this results in each branch originating from an

inner node containing either an attribute value or its negation. For

numerical values it results in a range of values on each edge (e.g. ≤ 2

and > 2).

• The minimum number of instances classified to each leaf node is set

to 20, so as to discourage the tree from becoming too large.

• The confidence factor for pruning is set to 25%, which is a the default

value in WEKA [129].

In general, the quality of the decision trees produced will be evaluated

using the percentage of incorrectly classified instances. For the perturbed
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data sets, we will compare these percentages to the values obtained from

the decision tree trained on the original data set.

Mushroom Data Set

The decision tree built from the original Mushroom data set is shown in

Figure 6.11. The attribute which appears most prominently in this decision

tree is Odour (attribute 6). The other two attributes which feature are Spore

Print Colour (attribute 20) and Population (attribute 21). The confusion

matrix for this decision tree tested against the whole original microdata

file is given in Table 6.8, and shows that all instances in the data set were

correctly classified. There are 2156 records classified as poisonous, and the

remaining 3488 are classified as edible. The same predictive accuracy was

obtained when the data set was trained using the k-folds cross-validation

method, with the number of subsets k = 10. Looking at Figure 6.11, we can

see that close to 75% of the records can be classified as poisonous solely on

the basis of the value for the Odour (attribute 6) attribute being equal to

foul (f).

poisonous edible total

poisonous 2156 0 2156

edible 0 3488 3488

total 2156 3488 5644

Table 6.8: Confusion matrix for original Mushroom data set

We trained the J48 decision tree builder on all of the perturbed data sets

described at the start of Section 6.4, that is, 30 files for each perturbation

method (VICUS and Random), for each of the 5 different parameter choices

for k1 and k2. The classification errors for all perturbed files is shown in

Table A.7 of Appendix A, and the averages for each set of 30 perturbed

files is shown in Table 6.9. A reminder that a value within an attribute

is k2 times more likely to change to another value in the same partition

than one in a different partition, and k1 times more likely to stay the same

than change to a value in the same partition. Note that the percentage of

incorrectly classified instances for the original Mushroom data set was 0,

since all instance were correctly classified. Hence, for all perturbation the

predictive accuracy is close to that for the original data set, since for most
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Figure 6.11: Decision tree for original Mushroom data set.
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(k1, k2) parameter choices the average classification error is below 1.0%.

Only when the highest level of noise is added, for k1 = 2 and k2 = 20 does

the predictive accuracy fall below 99%. Figure 6.12 shows the distributions

of classification errors for the Mush5 perturbed files (k1 = 10, k2 = 50) for

both methods. Note that there is very little difference between the two

distributions as the classification error values only range from 0 to 0.99.

Perturbation k1 k2 VICUS Random

Mush1 2 20 1.3962 1.0091

Mush2 5 20 0.7891 0.6311

Mush3 10 10 0.6139 0.1370

Mush4 10 20 0.4252 0.1606

Mush5 10 50 0.4519 0.2268

Table 6.9: Average percentage of incorrectly classified instances for Mush-
room perturbations, when tested against the original data set.

In summary, it would appear that even when a relatively large amount

of noise is added in perturbing the Mushroom data set, there is still a high

level of predictive accuracy achieved with both the VICUS and Random

methods.

Wisconsin Breast Cancer Data Set

When testing the predictive accuracy for a classification model trained

on the original WBC data set, we tested several values for k to find a good

result using the k-fold cross-validation method. A summary of these relative

errors for each value of k selected is shown in Table 6.10, note that the best

predictive accuracy was provided by k = 15 with only 5.12% incorrectly

classified instances.

The confusion matrix for the decision tree built on the whole original

WBC data set is shown in Table 6.11. The matrix shows that 435+217 = 652

instances, or 95.46%, were correctly classified. Of the 457 instance that were

classified as benign, 22 of these were incorrect, which would result in 22 pa-

tients being incorrectly given the all clear, when they in fact had a malignant

cancer. Similarly, 9 records were incorrectly classified as malignant resulting

in a false positive. Although these results are clearly not ideal, our focus
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Figure 6.12: Classification error distribution comparison for Mushroom -
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k % error

5 7.1742

10 6.1493

15 5.1245

20 5.8565

50 6.0029

Table 6.10: Selection of k-fold cross-validation parameter, showing k versus
percentage of incorrectly classified instances over all folds.

here is not on building the most accurate decision tree, but rather comparing

the trees built on the original and perturbed data sets. So when comparing

the amount of instances misclassified on the perturbed data sets, we need to

bear in mind that the classification error on the original data set is 4.54%

when the whole data set is then again used for training, and 5.12% for a

15-fold cross validation.

benign malignant total

benign 435 9 444

malignant 22 217 239

total 457 226 683

Table 6.11: Confusion matrix for original WBC data set

The decision tree built from the original Wisconsin Breast Cancer data

set is shown in Figure 6.13. Attribute 2, Uniformity of Cell Size, is very

prominent in the decision tree, with it accounting for two of the three inner

nodes, and 86.8% of the classifications based simply on the value of this

attribute. The other attribute which features in the decision tree is Attribute

6, Bare Nuclei, and it only appears in a logic rule alongside Attribute 2, never

on its own.

As for the Mushroom data set, we ran the J48 decision tree builder on

all of the perturbed data sets described at the beginning of Section 6.4.

The percentage of incorrectly classified instances for all the decision trees

trained on the files perturbed using the VICUS and Random methods, and

then tested against the original WBC microdata file is shown in Table A.13

in Appendix A. A summary table of the average classification errors for
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Figure 6.13: Decision tree for original Wisconsin Breast Cancer data set.

different values of the probability parameters k1 and k2 is shown in Table

6.12. A reminder that the percentage of incorrectly classified instances for

the original WBC data set was 5.12% for the k-fold cross validation method.

We can see that for relatively small amounts of noise, i.e. when (k1 × k2 =

100), the VICUS and Random method have a predictive accuracy within

approximately 1% of the result for the original WBC data set. A comparison

of the relative predictive accuracy for when k1 × k2 = 100 is shown in

Figure 6.14. Note that for all three parameter choices, the difference between

average classification errors is never more than 0.5%. Additionally, we note

that for when k2 = 50, that is, a value is 50 times more likely to change

to another value in the same partition than one in a a different partition,

the VICUS method performs better than the Random method. Similar

results were also noted for when the decision trees were trained and tested

on the same file, rather than being tested on the original data set (see

Appendix A, Section A.5 for results). In combination, these results indicate

that although the combined value of k1 and k2 is important in ensuring

a high level of data quality, having a high value for k2 is more important

as it ensures that the when attribute values are perturbed they are only

changed to another attribute value that they are very similar with. This is

the underlying strength of our noise addition technique.
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Figure 6.14: Decision tree classification error comparison for WBC per-
turbed files when k1 × k2 = 100.
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Perturbation k1 k2 VICUS Random

WBC1 2 2 16.0957 18.0768

WBC2 2 10 5.7447 7.9795

WBC3 2 50 5.8858 6.3104

WBC4 5 20 5.9102 5.4563

WBC5 10 10 5.1928 4.9067

Table 6.12: Average percentage of incorrectly classified instances for WBC
perturbations.

We examine how the VICUS method compares to the Random when a

relatively large amount of noise is added, i.e., for smaller values of k1 and k2.

Recall that when we have a low value for k1 a value is more likely to change

to another value than stay the same. Figure 6.15 compares the average

classification errors for both the VICUS and Random methods when the

value of k1 is fixed, and we vary the value of k2. We note that the VICUS

method performs better in terms of predictive accuracy for all three values

of k2. Figure 6.16 shows the comparative distribution of the classification

errors over the 30 perturbed files for WBC2 (k1 = 2, k2 = 10), and we can

see that the distribution for the VICUS files is much narrower than for the

Random method.

To this point we have focused on the predictive accuracy and not nec-

essarily on the decision trees produced on the perturbed files. We did not

conduct extensive experimental analysis to compare how the two methods

performed in relation to the relative logic rules extracted from the decision

trees, instead choosing to focus on the predictive accuracy. However, we will

comment on one comparison set of decision trees as an illustrative example,

selecting two decision trees generated from the WBC3 (k1 = 2, k2 = 50)

perturbation for comparison. Figure 6.17 shows one of the decision trees

trained on a file perturbed via the VICUS noise addition method. Like the

tree produced on the original WBC data set (see Figure 6.13), this tree also

features Attribute 2 as the root element, and indeed has the same rule on

the branches of this node. A similar number of records can be classified as

benign, based on the value of Attribute 2 being ≤ 2, for the original decision

tree and the one from Figure 6.17. In the original tree there were 418 records

classified as benign based on this rule, with only 12 of those being incor-
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Figure 6.15: Decision tree classification error comparison for WBC per-
turbed files when k2 = 2.
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rectly classified, and for the tree from the file perturbed using the VICUS

method there are 401 records classified using the same rule, with only 14

incorrectly classified. Although the rest of the tree is quite different to the

original, there is clearly some degree of similarity between these two trees.

Att 2

>2

>1

<=2

Att 3

<=1

b (401/14)

b (23/1) m (259/35)

Figure 6.17: Sample decision tree for VICUS perturbed Wisconsin Breast
Cancer data set. (k1 = 2, k2 = 50)

When we compare the decision tree trained from the original data set

with one trained on a file perturbed using the Random method, as shown in

Figure 6.18, there appears to be much less in common between the two trees.

The second tree is also considerably more complex, with 10 rules producing

6 leaf nodes, versus 6 rules producing 4 leaf nodes in the original. Although

the same rule for Attribute 2, discussed above, appears in the decision tree,

it is not as prominent and no records are classified on the basis of this rule

alone.

To summarise, the results in this section have shown that when a good

choice of probability parameters is selected to perturb the files, our VI-

CUS method performs better than the so-called Random method. For the

Mushroom data set, the predictive accuracy for all perturbed files was over

98%, and for most parameter selections as within 0.5% of the original file.

For the WBC data set when relatively low levels of noise were added, e.g.

k1×k2 = 100, the predictive accuracy for the VICUS and Random methods

were both within around 1% of the result for the original file. When larger

amounts of noise were added, we noted that the VICUS method performed

slightly better than the Random method. In the next subsection we will ex-

amine how well our method performs when tested using a different measure
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Figure 6.18: Sample decision tree for Random perturbed Wisconsin Breast
Cancer data set. (k1 = 2, k2 = 50)
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of data quality.

Chi-Square Test Results

We used the SPSS Statistical Software package to analyse the Chi-square

statistics of our two experimental data sets. For each attribute pair we cal-

culated the Pearson’s Chi-Square statistic and Likelihood Ratio Chi-Square

statistic on the original data set, 30 files perturbed using VICUS method

and 30 file perturbed via the Random method. We compared both the chi-

square statistic value and associated p-value for each. We first want to see

how our VICUS method performed in terms of how far the χ2 values were

from those on the original file and the Randomly perturbed files. We next

wanted to verify if there was a change in the outcome of the null hypothesis

for the files perturbed with the VICUS method.

Mushroom Data Set

We chose to look at Attribute 4 (Cap Colour) against the other at-

tributes, since this attribute showed to be the most sensitive in terms of

security when we calculated the entropy for the user knowing one attribute

value (refer to Section 6.4.2). We also selected only one perturbation in

terms of probability parameters, selecting the values of k1 = 5 and k2 = 20

for these parameters. This combination was chosen since this set of param-

eters gave middle of the range results on both entropy and decision tree

classification error.

Of the 21 attribute combinations, there were 7 attribute pairs that sat-

isfied the large sample requirement on the original data set. That is, these

attributes had over 80% of cells in the contingency table with expected

counts larger than 5, and all cells had an expected count higher than 1.

These attribute pairs selected for further analysis were as follows.

• Class (Attribute 1) and Cap Colour (Attribute 4)

• Bruises (Attribute 5) and Cap Colour (Attribute 4)

• Gill Spacing (Attribute 8) and Cap Colour (Attribute 4)
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• Gill Size (Attribute 9) and Cap Colour (Attribute 4)

• Stalk Shape (Attribute 11) and Cap Colour (Attribute 4)

• Stalk Root (Attribute 12) and Cap Colour (Attribute 4)

• Stalk Surface Below Ring (Attribute 14) and Cap Colour (Attribute

4)

Attribute Original VICUS Random Degrees of
Pairing χ2 p-value χ2 p-value χ2 p-value Freedom

1 & 4 1297.28 6.45 × 10−276 821.13 5.11 × 10−173 657.48 1.01 × 10−137 7

5 & 4 982.36 7.81 × 10−208 766.42 3.27 × 10−161 562.44 2.97 × 10−117 7

8 & 4 617.27 4.64 × 10−129 426.03 6.20 × 106−88 298.62 1.19 × 10−60 7

9 & 4 756.27 5.06 × 10−159 435.99 4.73 × 10−90 286.97 3.66 × 10−58 7

11 & 4 1832.44 0 1048.97 3.15 × 10−222 1032.52 1.13 × 10−218 7

12 & 4 2427.35 0 720.65 5.72 × 10−139 633.45 1.46 × 10−120 21

14 & 4 2711.80 0 1626.64 0 848.46 4.74 × 10−166 21

Table 6.13: χ2 and associated p-value summary for Mushroom data set

Figure 6.19 shows the distribution of the χ2 statistic values for the 30

files perturbed via the VICUS method, the attribute pair shown here is Cap

Colour and Stalk Root Below Ring (Attributes 4 and 14). Similarly, Figure

6.20 shows the distribution for 30 files perturbed via the Random method

on the same attribute combination. Finally, Figure 6.21 compares these two

distributions, and shows how far away they are from the χ2 statistic for the

original file, which had the value of 2711.8. On all attribute pairs examined,

our VICUS method produced χ2 values closer to the original than the those

of the random method. The average Pearson’s χ2 results are summarised

in Table 6.13, and the Likelihood Ratio χ2
LR results are shown in Table

6.14. Note that entries that show zero for the p-value are rounded to this

value by SPSS, since the probability, although extremely low, will never be

zero. Assuming a significance value α = 0.05, all of the cases (for both

the original and perturbed files) would result in the null hypothesis being

rejected, and hence there is a statistical relationship between the attribute

pairs examined.
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Attribute Original VICUS Random Degrees of
Pairing χ2

LR p-value χ2

LR p-value χ2

LR p-value Freedom

1 & 4 1525.36 0 911.22 1.81 × 10−192 709.61 5.85 × 10−149 7

5 & 4 1177.56 5.03 × 10−250 861.12 1.19 × 10−181 601.34 1.25 × 10−125 7

8 & 4 717.32 1.27 × 10−150 463.12 6.76 × 10−96 306.48 2.50 × 10−62 7

9 & 4 686.62 5.28 × 10−144 436.16 4.16 × 10−90 274.24 1.90 × 10−55 7

11 & 4 2253.66 0 1179.73 1.71 × 10−250 1131.77 3.98 × 10−240 7

12 & 4 2880.86 0 740.67 3.34 × 10−143 633.98 1.13 × 10−120 21

14 & 4 3304.05 0 1832.83 0 857.04 7.17 × 10−168 21

Table 6.14: χ2
LR and associated p-value summary for Mushroom data set

Wisconsin Breast Cancer Data Set

For this data set we chose to look at Attribute 3 (Uniformity of Cell

Shape) and Attribute 5 (Single Epithelial Cell Size) in combination with

other attributes. The reason being that these two attributes were at the

extremes when it came to entropy results, with Attribute 3 having the low-

est entropy and Attribute 5 having the highest, when the user knows one

attribute. The probability parameters selected for the perturbations using

the VICUS and Random method were k1 = 2 and k2 = 50 since this combi-

nation gave good results for both the entropy and decision tree classification

tasks.

Of all the attribute combinations permissable with Attribute 3 and At-

tribute 5, there were only two combination that satisfied the large sample

requirement. These two combinations were as follows.

• Uniformity of Cell Shape (Attribute 3) and Class (Attribute 10)

• Single Epithelial Cell Size (Attribute 5) and Class (Attribute 10)

The summary results for the Pearson’s Chi-square and Likelihood Chi-

square statistics are shown in Table 6.15 and Table 6.16 respectively. These

are the average χ2 results over 30 files perturbed via the VICUS and Random

methods. As with the Mushroom data set, for the attribute combinations

examined, the VICUS method performed slightly better than the Random

method on average. Although the p-values were significantly higher on the

perturbed files for attribute combination 5 and 10, they were still below the
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alpha value of 0.05 indicating that the statistical relationship between these

two attributes was at least in part preserved.

Attribute Original VICUS Random Degrees of
Pairing χ2 p-value χ2 p-value χ2 p-value Freedom

3 & 10 523.07 6.58 × 10−107 308.10 4.98 × 10−61 250.30 8.63 × 10−49 9

5 & 10 447.86 8.22 × 10−91 35.78 4.34 × 10−05 28.76 0.00071 9

Table 6.15: χ2 and associated p-value summary for Wisconsin Breast Cancer
data set

Attribute Original VICUS Random Degrees of
Pairing χ2

LR p-value χ2

LR p-value χ2

LR p-value Freedom

3 & 10 640.79 3.65 × 10−132 372.67 9.23 × 10−75 275.24 4.60 × 10−54 9

5 & 10 506.02 2.96 × 10−103 42.02 3.26 × 10−06 29.91 0.00045 9

Table 6.16: χ2
LR and associated p-value summary for Wisconsin Breast Can-

cer data set

6.5 Conclusion

We have outlined a new noise addition technique, VICUS, for application on

categorical values. The technique can also be applied to numerical attributes

by treating the discrete values as categories. Initial results indicate that our

method performs well in both the areas of security and data quality. Analysis

indicates that a low value for k1 and high value for k2 transition probability

parameters leads to improved performance in terms of both data quality and

security of VICUS over the Random method. Setting the product (k1× k2)

of these parameters to a value of 100 or higher, while also ensuring that k1 is

low and k2 is high appears to give the best balance between the conflicting

goals of security and data quality.



Chapter 7

Conclusion

Success is not a place at which one arrives but rather the spirit with which

one undertakes and continues the journey.

–Alex Noble

In this chapter we conclude the thesis with a discussion of the main

contributions, and present ideas for the direction of future work arising from

the thesis.

7.1 Summary

There is the potential for great benefit to be gained from the analysis of

genetic data warehouses. However, due to the highly sensitive nature of

genetic information there is also a great risk for harm to individuals via

breaches of privacy and discrimination. This thesis has provided a holistic

approach to solving this problem, and provided practical tools to help ensure

that a balance between research outcomes and the rights of the individual

can be best achieved. As researchers, we have not only an ethical, but also

a legal obligation to ensure that all reasonable effort is made to ensure the

privacy of the individuals whose information we are dealing with in genetic

databases.

177
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One way in which the trust between data managers and the public can

be nurtured is to ensure that the appropriate Statistical Disclosure Control

(SDC) measures are employed. By eliciting a higher level of trust amongst

all parties involved we may be able to reduce the dependence on so-called

‘hard security’ measures, and instead move more towards an environment

of trust management systems. By providing a quantifiable measure of trust

in the context of statistical databases, we aim to progress things further in

this direction.

While it is important to investigate avenues for reducing the reliance on

tradition SDC methods, they still have an important role to play in helping

to solve the SDC problem. One of the challenges that genetic databases

pose in the context of these methods is their relatively high percentage of

categorical attributes. The application of SDC techniques to categorical

values can be less straightforward than for numerical attributes since we do

not have an easy way to decide similarity, or ordering for these values. One

existing technique that has been successfully applied to categorical values

is the Post RAndomisation Method (PRAM) developed by a group of re-

searchers at Statistics Netherlands [54]. By incorporating this SDC method

into our Privacy Protection Framework, we aim to better protect genetic

databases without the need to modify the not yet fully understood genetic

information.

One of the main components of our Privacy Protection Framework is the

clustering of categorical values to help in the design of the transition prob-

ability matrices. We have provided a similarity measure that captures the

direct and transitive similarity between values in an attribute. By incorpo-

rating our similarity measure into the VICUS clustering technique we make

the task of assigning probabilities to the transition matrix more straightfor-

ward, and we can move a step closer to providing a complete framework for

the protection of genetic data warehouses.

7.2 Contributions

Recalling our first research question from Section 1.2.
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What role does trust play in the relationships between the stake-

holders in a genetic statistical data warehouse system and how

best can it be modelled?

We have been able to go a long way towards fully answering this question,

not only in the context of genetic data warehouses but also for statistical

data warehouse in general. In Chapter 2 we extensively examined the trust

relationship between the three key stakeholders in a statistical data ware-

house system, namely the Data Source, Data Manager and Data User. By

modeling these trust relationships we were able to see that when low levels

of trust exist between the system stakeholders, the overall functioning of

the system is placed in jeopardy. We next developed a model of trust in the

context of statistical data warehouse systems, with many of the elements of

this model being quantifiable. By providing data managers with a quantifi-

able model of trust in the SDC context we are providing them with insight

into the workings of their system, and allowing them to provide users with

the appropriate level of SDC methods based on their varying levels of trust.

Indeed, we have outlined a comprehensive Privacy Protection Framework

that when applied by data managers will increase the likelihood of positive

collaboration by all system stakeholders. The overall objective of reducing

the reliance on traditional SDC security methods can become a reality with

the application of this framework.

Although we have been able to provide a quantifiable measure for the

Cooperation Threshold, we do acknowledge that measuring certain compo-

nents of the trust in a given situation is difficult due to their subjective

nature. In particular, the propensity to trust and distrust constructs have

proved challenging to quantify, and this is an immediate focus of our future

research in this area.

Despite the promising developments in the application of trust manage-

ment to the protection of genetic statistical data warehouse systems, there is

still a need in many circumstance to employ more traditional SDC methods.

This is of particular relevance when low levels of trust between the sys-

tem stakeholders is exhibited. This leads to the importance of our second

research question from Section 1.2.
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How can we successfully apply statistical disclosure control mea-

sures to a genetic statistical data warehouse systems when a large

proportion of the data is categorical in nature?

In addressing this research question we have first presented a framework

for the protection of genetic databases based around the clustering of cate-

gorical values to provide a measure of similarity. Importantly this framework

is also applicable to any statistical database which contains categorical at-

tributes.

Based on the PRAM [54] noise addition technique, the framework pro-

poses the application of categorical clustering techniques to help decide on

the probability transition matrices. On investigation of existing categori-

cal clustering techniques we discovered that none were successfully able to

capture the notion of transitive similarity that we observed in real data

sets. With this in mind we developed a new similarity measure for categor-

ical attribute values. We were also able to incorporate flexibility into our

similarity measure via the ability to adjust the relative levels of S-Prime

and S-Secundum similarity. After considerable experimental analysis we

observed two important corollaries of our similarity measure exploration.

1. Not all numerical attributes appear to behave in a numerical manner,

which we termed the ‘numerical attribute phenomenon’, This was a

somewhat surprising discovery which implies that current noise addi-

tion techniques for numerical attributes are not suitable for application

to the attributes that exhibit the numerical attribute phenomenon.

For these attributes alternative noise addition techniques should be

applied, such as our VICUS technique.

2. Another interesting application of our similarity measure which arose

during its development is the potential to provide an ordering for cat-

egorical attributes. Importantly, this could lead to the application of

numerical noise addition techniques to categorical attributes directly.

This would be beneficial as these techniques have been relatively well

studied and are computationally less expensive.
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By incorporating our similarity measure for categorical attributes into a

new clustering technique, VICUS, we have been able to provide a straight-

forward mechanism for deciding the transition probability matrices used in

the application of PRAM. The technique can also be applied to numeri-

cal attributes directly by treating their discrete values as categories. After

extensive experimental analysis our technique appears to provide a good

balance between security and data quality. This being the overall goal of

SDC techniques in general, we feel confident that we have gone a long way

towards solving the difficult problem of privacy protection in genetic data

warehouses. Not only are our methods also applicable for any statistical

database containing categorical attributes, but we have also been able to

provide the data manager with a degree of flexibility in their application

through the parameters incorporated into our VICUS noise addition tech-

nique.

7.3 Future Work

One of the challenges we faced when developing our trust model (Chapter

2) was how to quantify situational trust. By gaining a better insight into

the distinction between the subjective and objective components of situa-

tional trust, we hope to make further steps towards quantifying this elusive

concept. One way in which this might be achieved is through modelling the

propensity to trust and distrust density functions.

From our Privacy Protection Framework for genetic databases in Chap-

ter 4, we would like to further investigate the use of sub-attributes in the

application of a similarity measure. Another aspect of the framework which

warrants further research is the incorporation of integrity rules into the de-

cision of when to compound attributes in the PRAM SDC method.

In Chapter 5 we discussed the numerical attribute phenomenon and the

impact that this could have on the application of SDC methods for numerical

attributes. An area of future research in this direction would be to study

how treating numerical attributes as categorical and perturbing them via

our VICUS method effects to overall quality of the perturbed file. Another
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possible application of our similarity measure which was discussed briefly

in Chapter 5 is using the relative similarities in order to provide a distance

measure, or relative ordering, for categorical values.



Appendix A

Experiments - Detailed

This Appendix contains details of the experiments outlined in Chapter 5

and Chapter 6.

183



A.1. S-Secundum Algorithms 184

A.1 S-Secundum Algorithms

Input: Graph G, Threshold T

Output: S
′′

values for G

initialise S
′′

matrix to 0;

for each attribute x ∈ G do
get the list of attribute values valx;

/* Loop over all pairs of values for the attribute */

for each value i ∈ valx do

for each value j ∈ valx do
currIndex← 0;

neighList[]← -1 for all vertices in G;

/* Loop over all attributes in G, excluding x */

for each attribute y ∈ G \ x do
get the list of attribute values valy;

/* Loop over all pairs of values in y */

for each value c ∈ valy do

for each value d ∈ valy do
if there are egdes ({c, i} and {d, j}) ∨ ({c, j}
and {d, i}) in G then

neighList← mergeNeighbours();

end

end

end

end

S
′′

ij ← S
′

ij calculated on neighList

end

end

end

return S
′′

matrix;

Algorithm A.1: Calculating S
′′

values for graph G, as implemented
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Input: Graph G, Threshold, i, j, c, d,neighList[]

Output: neighList[]

Function mergeNeighbours();

if S
′

cd > Threshold then

if neighList[c] == −1 ∧ neighList[d] == −1 then
neighList[c]← currIndex;

neighList[d]← currIndex;

currIndex + +;

end

else if neighList[c]! = −1 ∧ neighList[d]! = −1 then

if neighList[c]! = neighList[d] then
neighList[d]← neighList[c];

for z ← to n do

if neighList[z] == neighList[d] then
neighList[z]← neighList[c];

end

end

end

end

else if neighList[c]! = −1 ∧ neighList[d] == −1 then
neighList[d]← neighList[c];

end

else if neighList[c] == −1 ∧ neighList[d]! = −1 then
neighList[c]← neighList[d];

end

end

Algorithm A.2: Calculating neighbour pairs list, used in Algo-

rithm A.1

A.2 Motivating Example

Table A.1 shows the S
′

ij values for attributes 2-4 in the motivating example.

The similarities within an attribute are shown in bold in the table. Vertex

labels 7-9 are for attribute Program, labels 10-13 are for attribute Course

and labels 14-17 are for attribute Tutor. For exact matching between labels
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and attribute values please refer to Table 5.2 in Section 5.1. Table A.2 gives

the S
′′

ij values for the Motivating example graph, with a S
′′

ij Threshold of

0.4. Table A.3 shows the Sij similarity values for the Motivating Example

with weightings of c1 = 0.6 and c2 = 0.4.

S
′

ij 7 8 9 10 11 12 13 14 15 16 17

7 1.000 0.000 0.169 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

8 0.000 1.000 0.463 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

9 0.169 0.463 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 0.000 0.000 0.000 1.000 0.471 0.000 0.000 0.000 0.000 0.000 0.000

11 0.000 0.000 0.000 0.471 1.000 0.333 0.183 0.000 0.000 0.000 0.000

12 0.000 0.000 0.000 0.000 0.333 1.000 0.548 0.000 0.000 0.000 0.000

13 0.000 0.000 0.000 0.000 0.183 0.548 1.000 0.000 0.000 0.000 0.000

14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.258

15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.436 0.000

16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.436 1.000 0.436

17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.258 0.000 0.436 1.000

Table A.1: S
′

ij values for attributes 2-4 of Motivating Example

S
′′

ij 7 8 9 10 11 12 13 14 15 16 17

7 1.000 0.000 0.239 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

8 0.000 1.000 0.772 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

9 0.239 0.772 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 0.000 0.000 0.000 1.000 0.707 0.000 0.000 0.000 0.000 0.000 0.000

11 0.000 0.000 0.000 0.707 1.000 0.569 0.623 0.000 0.000 0.000 0.000

12 0.000 0.000 0.000 0.000 0.569 1.000 0.806 0.000 0.000 0.000 0.000

13 0.000 0.000 0.000 0.000 0.623 0.806 1.000 0.000 0.000 0.000 0.000

14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.365

15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.617 0.333

16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.617 1.000 0.617

17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.365 0.333 0.617 1.000

Table A.2: S
′′

ij values for attributes 2-4 of Motivating Example, T=0.4

A.3 Mushroom Data Set

Table A.4 provides all of the attribute values and their corresponding vertex

labels for the Mushroom data set [5].

The bottom two graphs in Figure A.1 show how the relative level of

error changes based on a change in either the k1 or k2 parameters, when
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Sij 7 8 9 10 11 12 13 14 15 16 17

7 1.000 0.000 0.197 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

8 0.000 1.000 0.586 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

9 0.197 0.586 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 0.000 0.000 0.000 1.000 0.566 0.000 0.000 0.000 0.000 0.000 0.000

11 0.000 0.000 0.000 0.566 1.000 0.428 0.359 0.000 0.000 0.000 0.000

12 0.000 0.000 0.000 0.000 0.428 1.000 0.651 0.000 0.000 0.000 0.000

13 0.000 0.000 0.000 0.000 0.359 0.651 1.000 0.000 0.000 0.000 0.000

14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.301

15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.509 0.133

16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.509 1.000 0.509

17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.301 0.133 0.509 1.000

Table A.3: Sij values for attributes 2-4 of Motivating Example, T=0.4,
c1 = 0.6 and c2 = 0.4

the same data file is used for training and testing. The bottom left graph in

Figure A.1 shows how the relative level of classification error changes when

we fix the k2 parameter at 20 and change the k1 parameter. This means

that an attribute value is always 20 times more likely to stay the same than

change to another value in the same partition. The three values chosen for

the k1 parameter were 2, 5 and 10. Note that due to the relatively high

value for k2, at 20, the difference in relative percentage error between the

VICUS and Random methods stays at around 80% for all three choices for

k1. That is, the average classification error for the 30 files perturbed via

the VICUS method was around 20% lower than the average error for the 30

files perturbed using the Random method.

The second graph for the Mushroom data set in Figure A.1, in the bot-

tom right hand corner, shows how the relative classification errors behave

when the value of k1 is fixed and k2 is varied. The value of k1 has been fixed

at 10, and the three values of k2 shown are 10, 20 and 50. Interestingly,

the higher the value for k2, the relative distance between the average clas-

sification errors for the VICUS and Random methods grows. For instance,

for k1 = 10 and k2 = 10 the average percentage of instances misclassified

via the VICUS method is 3.627%, which is 14.5% lower than the result for

the Random method at 4.243%. By contract, the VICUS error for k1 = 10

and k2 = 50 is 39.2% lower than that for the Random method. This would

seem to indicate that there is an improvement in data quality when choosing
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Figure A.1: Decision tree classification error comparison for WBC and
Mushroom data sets.
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the VICUS method over the Random method. The lower the probability

that an attribute value will change to one in a different partition, that is

one deemed less similar, the smaller the percentage of misclassified records.

This is relative to the classification error when the probability of an attribute

value changing to another value is equal for all other values.



A.3. Mushroom Data Set 190

Attribute Value Vertex Attribute Value Vertex

Number Number

Class Attribute poisonous (p) 1 Stalk Surface silky (k) 51

edible (e) 2 Above Ring smooth (s) 52

Cap Shape flat (f) 3 scaly (y) 53

convex (x) 4 fibrous (f) 54

bell (b) 5 Stalk Surface silky (k) 55

knobbed (k) 6 Below Ring smooth (s) 56

conical (c) 7 scaly (y) 57

sunken (s) 8 fibrous (f) 58

Cap Surface fibrous (f) 9 Stalk Colour pink (p) 59

scaly (y) 10 Above Ring brown (n) 60

smooth (s) 11 buff (b) 61

grooves (g) 12 white (w) 62

Cap Colour grey (g) 13 grey (g) 63

yellow (y) 14 cinnamon (c) 64

buff (b) 15 yellow (y) 65

pink (p) 16 Stalk Colour buff (b) 66

white (w) 17 Below Ring brown (n) 67

brown (n) 18 pink (p) 68

cinnamon (c) 19 white (w) 69

red (e) 20 grey (g) 70

Bruises no (f) 21 cinnamon (c) 71

bruises (t) 22 yellow (y) 72

Odour foul (f) 23 Veil Colour white (w) 73

none (n) 24 yellow (y) 74

creosote (c) 25 Ring Number one (o) 75

almond (a) 26 two (t) 76

anise (l) 27 none (n) 77

musty (m) 28 Ring Type large (l) 78

pungent (p) 29 pendant (p) 79

Gill Attachment free (f) 30 evanescent (e) 80

attached (a) 31 none (n) 81

Gill Spacing close (c) 32 Spore Print chocolate (h) 82

crowded (w) 33 Colour green (r) 83

Gill Size broad (b) 34 brown (n) 84

narrow (n) 35 black (k) 85

Gill Colour grey (g) 36 white (w) 86

chocolate (h) 37 purple (u) 87

brown (n) 38 Population several (v) 88

pink (p) 39 solitary (y) 89

green (r) 40 scattered (s) 90

purple (u) 41 clustered (c) 91

white (w) 42 numerous (n) 92

black (k) 43 abundant (a) 93

yellow (y) 44 Habitat paths (p) 94

Stalk Shape enlarging (e) 45 woods (d) 95

tapering (t) 46 grasses (g) 96

Stalk Root bulbous (b) 47 meadows (m) 97

club (c) 48 leaves (l) 98

equal (e) 49 urban (u) 99

rooted (r) 50

Table A.4: Vertex labeling for Mushroom data set
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File Mush1 Mush2 Mush3 Mush4 Mush5
No. VICUS Random VICUS Random VICUS Random VICUS Random VICUS Random

1 11.9715 12.0080 11.7502 11.7321 11.6130 11.5761 11.6130 11.5761 11.5578 11.5289
2 11.9716 12.0075 11.7499 11.7311 11.6124 11.5778 11.6124 11.5778 11.5571 11.5276
3 11.9721 12.0076 11.7504 11.7322 11.6137 11.5778 11.6137 11.5778 11.5567 11.5279
4 11.9720 12.0082 11.7492 11.7307 11.6132 11.5762 11.6132 11.5762 11.5566 11.5280
5 11.9714 12.0076 11.7495 11.7310 11.6146 11.5758 11.6146 11.5758 11.5571 11.5284
6 11.9724 12.0062 11.7504 11.7322 11.6139 11.5770 11.6139 11.5770 11.5577 11.5293
7 11.9726 12.0074 11.7506 11.7318 11.6144 11.5770 11.6144 11.5770 11.5571 11.5277
8 11.9719 12.0073 11.7502 11.7326 11.6141 11.5776 11.6141 11.5776 11.5565 11.5292
9 11.9718 12.0081 11.7505 11.7314 11.6142 11.5757 11.6142 11.5757 11.5560 11.5289
10 11.9721 12.0069 11.7507 11.7302 11.6146 11.5781 11.6146 11.5781 11.5557 11.5280
11 11.9716 12.0072 11.7498 11.7319 11.6128 11.5759 11.6127 11.5758 11.5565 11.5281
12 11.9727 12.0072 11.7505 11.7328 11.6146 11.5769 11.6146 11.5769 11.5564 11.5282
13 11.9713 12.0073 11.7496 11.7316 11.6143 11.5777 11.6142 11.5777 11.5559 11.5275
14 11.9725 12.0072 11.7498 11.7304 11.6139 11.5777 11.6139 11.5777 11.5554 11.5290
15 11.9707 12.0079 11.7503 11.7322 11.6148 11.5773 11.6148 11.5773 11.5573 11.5290
16 11.9723 12.0075 11.7502 11.7316 11.6140 11.5775 11.6140 11.5775 11.5562 11.5282
17 11.9720 12.0077 11.7498 11.7316 11.6141 11.5793 11.6141 11.5793 11.5570 11.5287
18 11.9718 12.0074 11.7503 11.7317 11.6145 11.5782 11.6145 11.5782 11.5572 11.5282
19 11.9726 12.0080 11.7497 11.7313 11.6147 11.5780 11.6147 11.5780 11.5567 11.5285
20 11.9716 12.0070 11.7501 11.7316 11.6136 11.5782 11.6136 11.5782 11.5571 11.5278
21 11.9721 12.0074 11.7507 11.7320 11.6142 11.5772 11.6142 11.5772 11.5564 11.5279
22 11.9714 12.0069 11.7501 11.7324 11.6140 11.5768 11.6140 11.5765 11.5564 11.5281
23 11.9720 12.0069 11.7503 11.7317 11.6135 11.5775 11.6135 11.5775 11.5565 11.5285
24 11.9719 12.0077 11.7506 11.7306 11.6148 11.5767 11.6148 11.5767 11.5564 11.5290
25 11.9718 12.0072 11.7512 11.7322 11.6138 11.5766 11.6138 11.5766 11.5563 11.5280
26 11.9715 12.0078 11.7504 11.7316 11.6136 11.5774 11.6136 11.5774 11.5566 11.5285
27 11.9723 12.0074 11.7497 11.7315 11.6139 11.5785 11.6139 11.5785 11.5569 11.5280
28 11.9722 12.0064 11.7498 11.7324 11.6158 11.5763 11.6158 11.5763 11.5563 11.5280
29 11.9725 12.0067 11.7506 11.7315 11.6140 11.5771 11.6140 11.5771 11.5575 11.5278
30 11.9725 12.0075 11.7496 11.7313 11.6144 11.5770 11.6144 11.5770 11.5566 11.5298

Table A.5: Record entropies on perturbed files for Mushroom data set,
intruder knows 1 attribute
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File Mush1 Mush2 Mush3 Mush4 Mush5
No. VICUS Random VICUS Random VICUS Random VICUS Random VICUS Random

1 2.0591 2.4440 1.8844 2.2029 1.8411 1.9980 1.7145 1.9476 1.6362 1.8804
2 2.0885 2.4430 1.8693 2.2249 1.8274 2.0051 1.7263 1.9452 1.6412 1.9277
3 2.0793 2.4480 1.8771 2.1985 1.8287 2.0130 1.7246 1.9293 1.6443 1.9245
4 2.0808 2.4526 1.8880 2.1960 1.8183 2.0040 1.7164 1.9536 1.6326 1.9025
5 2.0729 2.4484 1.8690 2.1884 1.8294 2.0012 1.7184 1.9724 1.6417 1.9063
6 2.0828 2.4663 1.8709 2.1912 1.8347 2.0168 1.7167 1.9467 1.6500 1.9008
7 2.0680 2.4454 1.8857 2.1973 1.8284 2.0237 1.7310 1.9649 1.6496 1.8800
8 2.0720 2.4460 1.8755 2.1903 1.8365 2.0259 1.7245 1.9573 1.6367 1.8931
9 2.0780 2.4517 1.8973 2.1834 1.8172 1.9895 1.7250 1.9535 1.6462 1.9063
10 2.0847 2.4543 1.8805 2.1814 1.8256 2.0140 1.7163 1.9599 1.6526 1.9064
11 2.0787 2.4460 1.8803 2.1984 1.8291 1.9961 1.7238 1.9478 1.6460 1.9165
12 2.0631 2.4485 1.8814 2.2010 1.8359 1.9886 1.7072 1.9376 1.6449 1.9070
13 2.0693 2.4527 1.8699 2.2004 1.8289 2.0090 1.7231 1.9412 1.6529 1.9086
14 2.0638 2.4430 1.8692 2.2009 1.8333 1.9940 1.7219 1.9693 1.6337 1.8933
15 2.0804 2.4547 1.8830 2.1963 1.8262 2.0069 1.7270 1.9495 1.6364 1.8792
16 2.0628 2.4485 1.8782 2.1930 1.8172 2.0145 1.7424 1.9437 1.6340 1.8898
17 2.0714 2.4510 1.8830 2.2038 1.8204 2.0159 1.7057 1.9281 1.6421 1.9230
18 2.0846 2.4583 1.8679 2.1866 1.8229 2.0111 1.7307 1.9652 1.6382 1.9016
19 2.0571 2.4545 1.8782 2.1958 1.8336 2.0157 1.7323 1.9541 1.6338 1.9014
20 2.0821 2.4444 1.8801 2.2031 1.8500 1.9841 1.7255 1.9275 1.6445 1.8965
21 2.0812 2.4490 1.8645 2.1837 1.8296 1.9893 1.7126 1.9488 1.6401 1.9056
22 2.0777 2.4397 1.8863 2.1784 1.8237 2.0049 1.7135 1.9550 1.6347 1.9205
23 2.0763 2.4505 1.8847 2.2027 1.8192 2.0050 1.7196 1.9400 1.6481 1.8895
24 2.0604 2.4558 1.8780 2.1823 1.8139 2.0110 1.7207 1.9479 1.6353 1.9007
25 2.0764 2.4489 1.8787 2.1961 1.8286 1.9832 1.7401 1.9417 1.6366 1.9189
26 2.0719 2.4460 1.8743 2.2085 1.8349 2.0023 1.7172 1.9400 1.6450 1.9198
27 2.0874 2.4406 1.8793 2.2023 1.8111 2.0164 1.7237 1.9561 1.6410 1.9092
28 2.0688 2.4456 1.8749 2.2040 1.8220 1.9775 1.7298 1.9558 1.6349 1.9077
29 2.0794 2.4520 1.8761 2.1961 1.8472 1.9906 1.7119 1.9539 1.6319 1.9096
30 2.0682 2.4578 1.8686 2.1989 1.8244 1.9992 1.7167 1.9542 1.6413 1.9035

Table A.6: Confidential attribute entropies on perturbed files for Mushroom
data set, intruder knows 1 attribute
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File Mush1 Mush2 Mush3 Mush4 Mush5
No. VICUS Random VICUS Random VICUS Random VICUS Random VICUS Random

1 1.3466 1.4174 0.8505 0.7087 1.0631 0 0.1417 0 0.1417 0.2835
2 1.63 2.2679 0.8505 0.4252 0.805 0.1417 0 0.1417 0.567 0.1417
3 1.5592 0.8505 0.8505 0.1417 0.567 0 0.2126 0.1417 0.1417 0.1417
4 1.4174 0.2835 0.8505 0 0.9922 0.1417 1.2757 0.1417 0.9922 0.1417
5 1.1339 0.9922 0.567 0.4252 0.1417 0.1417 0.9922 0.1417 0.567 0.1417
6 2.6931 1.2048 1.2048 0.9922 0.8505 0.1417 0.1417 0.4252 0.567 0
7 0.9922 1.2757 0 0.7087 0.1417 0 0.4252 0 0.1417 0.2835
8 0.9922 0.8505 0.8505 0.1417 0.1417 0.4252 0 0.1417 0 0
9 0.9922 1.2757 1.2757 0.9922 0 0.1417 0.1417 0.1417 0.2126 0.4252
10 1.1339 0.9217 0.7087 0.4252 0.567 0 0.9922 0 0 0.1417
11 1.8427 0.7796 0.2835 0.1417 0.1417 0.1417 0.7087 0.1417 0.4961 0.1417
12 1.9844 0.1417 0.7796 0.4252 0 0.1417 0.7087 0.1417 0.9922 0.1417
13 1.0631 1.3466 0.8505 0.1417 0.7087 0.1417 0.567 0 0.1417 0
14 2.2679 0.7087 1.0631 0.9922 1.0631 0 0.7087 0.1417 0.4252 0.567
15 1.1339 0.8505 0.567 0.1417 0.9922 0.1417 0.1417 0.2126 0.4253 0.1417
16 0.9922 0.2835 1.1339 0.9922 0 0 0.1417 0 0.7796 0
17 1.1339 1.2757 0.2835 0.567 0.7796 0.1417 0 0 0.7087 0.2835
18 0.9922 0.4252 0.8505 0.8505 0.1417 0 0.7087 0.2835 0.9922 0.7087
19 1.3466 1.2757 0.2835 0.7087 0.8859 0.1417 0.7087 0.4252 0.9922 0.2835
20 0.9922 0.4252 1.1339 1.63 0.8505 0 0.567 0.1417 0.1417 0.2835
21 0.9922 0.7796 0.567 0.567 0.9922 0.1417 0 0 0.7796 0.1417
22 1.3466 0.2835 0.9922 0.9922 0.567 0.1417 0 0.1417 0.2126 0.4252
23 1.7718 1.2757 0.8505 0.2835 0.7087 0.2835 0.7087 0.567 0.1417 0.2835
24 1.9844 1.63 0.7796 1.429 0.7087 0.4252 0.1417 0.2126 0.7087 0.1417
25 1.9135 1.9844 1.0631 1.2757 0.7087 0.4252 0.567 0 0.9922 0.4252
26 1.7009 1.2048 0.8505 0.9922 0.9922 0.1417 0.7796 0.2835 0.1417 0.8505
27 1.2048 0.7087 0.8505 0.8505 0.9922 0.1417 0.9922 0.4252 0.2126 0
28 1.2048 0.9922 0.2126 0.7087 0.7087 0.1417 0 0.1417 0.7087 0.1417
29 0.9922 1.4174 1.1339 0.1417 0.2126 0.1417 0.1417 0.1417 0.2126 0
30 1.1339 1.1339 1.1339 0.1417 0.9922 0.1417 0.1417 0.1417 0.02126 0.1417

Table A.7: Percentage of incorrectly classified instances for J48 decision
tree builder on perturbed files for Mushroom data set, when tested against
original microdata file

Perturbation k1 k2 VICUS Random

Mush1 2 20 6.532 8.137

Mush2 5 20 3.763 4.872

Mush3 10 10 3.627 4.243

Mush4 10 20 2.681 3.383

Mush5 10 50 1.793 2.951

Table A.8: Average percentage of incorrectly classified instances for Mush-
room perturbations, when the perturbed file is used for testing.
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File Mush1 Mush2 Mush3 Mush4 Mush5
No. VICUS Random VICUS Random VICUS Random VICUS Random VICUS Random

1 6.6088 8.3629 4.1460 4.7130 3.6145 4.5358 2.7286 2.9943 1.6478 2.7640
2 6.6974 8.2211 3.8448 4.4295 4.0220 3.8979 2.7817 3.4904 2.0198 2.9943
3 6.8214 8.4160 3.2069 4.7307 3.7208 3.9157 2.6754 3.5082 1.7364 3.1538
4 6.6774 8.5932 4.1283 4.4826 3.9157 4.2700 2.6931 3.1184 1.7541 3.0475
5 6.5556 7.7250 3.6853 5.3685 3.6145 4.3232 3.0829 3.8625 1.6832 2.9589
6 6.6797 8.2034 3.8448 4.9610 3.5259 3.8271 2.7108 3.3664 1.7541 2.6223
7 6.1304 7.7073 3.8448 5.0850 3.5967 4.7307 2.6223 3.5082 1.4529 2.6577
8 6.6797 8.3274 3.4373 4.2326 3.6322 4.2877 2.1084 3.5613 1.7895 2.8172
9 6.0595 8.1680 3.5790 4.7661 3.3487 4.2169 2.4274 3.6676 1.7718 3.0829
10 6.5025 8.3806 3.2778 5.1028 3.5436 4.3055 2.7108 2.9412 1.9313 2.9943
11 6.5025 7.9376 3.3841 4.2535 3.2247 3.7208 3.2069 3.7030 1.7009 2.9589
12 6.8214 8.4692 3.9688 4.6421 3.3133 4.4118 2.6754 3.3664 1.9667 2.8703
13 6.4493 7.7959 3.7208 5.2445 3.7385 4.2346 2.6931 3.5082 1.4174 2.5159
14 6.0595 8.1502 4.5358 4.6775 3.8448 3.6499 2.9412 3.4550 1.9313 3.0120
15 6.2544 7.6010 3.7916 3.9334 4.4295 3.9511 2.7463 3.5613 1.6300 2.7286
16 6.4316 8.1502 4.0751 4.9965 3.2601 4.1814 2.4805 2.8880 2.0376 2.9766
17 6.6088 7.8845 4.0928 4.8370 3.5436 4.6775 2.7994 3.3664 1.9135 3.1361
18 6.9454 8.2211 3.6853 4.9610 3.6322 4.5004 2.9057 3.6322 2.0553 3.3664
19 6.6974 8.0085 3.5082 5.0850 3.5613 4.3586 2.8172 3.3310 2.1084 3.0652
20 6.6084 8.0971 4.2523 6.3430 3.7030 4.0043 2.9235 3.4196 1.8249 3.3133
21 6.6797 7.8668 3.4196 4.7484 4.0751 4.2523 2.4805 3.2601 2.0198 2.7994
22 6.3076 7.5656 3.5082 5.0319 3.8448 3.8448 2.2325 3.5436 1.5592 2.7640
23 6.4493 8.5046 3.5259 4.8193 3.1715 4.7307 2.8349 3.2424 1.6832 3.2955
24 6.3962 7.9908 4.0928 5.2268 3.6676 3.8802 2.3565 3.1006 1.6832 2.5514
25 6.7682 8.0439 4.5712 5.3685 3.4904 4.5358 2.8349 3.0829 1.8249 2.9412
26 7.1580 8.0439 3.5436 4.7307 3.7030 4.8016 2.9589 3.8979 1.5769 3.4373
27 6.7151 8.4515 3.2247 4.7838 3.7562 4.5358 2.6754 3.4018 1.7718 3.2424
28 6.2190 8.3274 3.5613 5.3685 3.2955 4.3586 2.3210 2.7640 1.9313 2.4628
29 6.0241 8.2920 3.8979 4.3409 3.4018 4.2523 2.5691 3.7562 1.8072 2.5691
30 6.4493 8.6109 3.5259 4.9079 3.6322 4.1106 2.4451 3.2069 1.8072 3.4373

Table A.9: Percentage of incorrectly classified instances for J48 decision tree
builder on perturbed files for Mushroom data set
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A.4 Contraceptive Method Choice

The attribute values and associated vertex numbering for the Contraceptive

Method Choice data set is shown in Table A.10



A.4. Contraceptive Method Choice 196

Attribute Value Vertex Attribute Value Vertex

Number Number

Wife’s Age 16 1 4 (high) 38

17 2 Husband’s 1 (low) 39

18 3 Education 2 40

19 4 3 41

20 5 4 (high) 42

21 6 Number of 0 43

22 7 Children 1 44

23 8 Ever Born 2 45

24 9 3 46

25 10 4 47

26 11 5 48

27 12 6 49

28 13 7 50

29 14 8 51

30 15 9 52

31 16 10 53

32 17 11 54

33 18 12 55

34 19 13 56

35 20 16 57

36 21 Wife’s 0 (Non-Islam) 58

37 22 Religion 1 (Islam) 59

38 23 Wife 0 (Yes) 60

39 24 Working 1 (No) 61

40 25 Husband’s 1 62

41 26 Occupation 2 63

42 27 3 64

43 28 4 65

44 29 Standard of 1 (low) 66

45 30 Living Index 2 67

46 31 3 68

47 32 4 (high) 69

48 33 Media 0 (good) 70

49 34 Exposure 1 (not-good) 71

Wife’s 1 (low) 35 Contraceptive 1 (none) 72

Education 2 36 Method Use 2 (long-term) 73

3 37 3 (short-term) 74

Table A.10: Vertex labeling for Contraceptive Method Choice data set
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A.5 Wisconsin Breast Cancer

File WBC1 WBC2 WBC3 WBC4 WBC5
No. VICUS Random VICUS Random VICUS Random VICUS Random VICUS Random

1 9.2273 9.2438 8.9324 8.9406 8.7189 8.7872 8.5026 8.5167 8.3148 8.3151
2 9.2300 9.2451 8.9133 8.9361 8.7107 8.7974 8.4974 8.5161 8.3148 8.3091
3 9.2281 9.2449 8.9217 8.9358 8.7147 8.7896 8.4953 8.5182 8.3157 8.3215
4 9.2293 9.2446 8.9114 8.9399 8.7118 8.7917 8.4993 8.5236 8.3233 8.3130
5 9.2278 9.2447 8.9240 8.9390 8.7118 8.7878 8.5012 8.5211 8.3096 8.3231
6 9.2301 9.2434 8.9235 8.9390 8.7127 8.7925 8.5025 8.5236 8.3071 8.3263
7 9.2289 9.2463 8.9181 8.9349 8.7111 8.7869 8.4990 8.5204 8.3163 8.3154
8 9.2300 9.2452 8.9237 8.9370 8.7130 8.7908 8.4952 8.5159 8.3190 8.3251
9 9.2299 9.2445 8.9246 8.9378 8.7139 8.7972 8.4989 8.5216 8.3105 8.3144
10 9.2296 9.2449 8.9224 8.9413 8.7132 8.7932 8.5047 8.5156 8.3086 8.3244
11 9.2304 9.2446 8.9181 8.9321 8.7110 8.7898 8.5016 8.5165 8.3133 8.3236
12 9.2279 9.2440 8.9195 8.9354 8.7145 8.7880 8.5017 8.5202 8.3152 8.3183
13 9.2300 9.2455 8.9133 8.9386 8.7141 8.7869 8.4988 8.5244 8.3096 8.3106
14 9.2280 9.2437 8.9175 8.9391 8.7157 8.7847 8.5025 8.5141 8.3088 8.3178
15 9.2277 9.2432 8.9228 8.9416 8.7139 8.7938 8.5011 8.5139 8.3134 8.3301
16 9.2288 9.2455 8.9195 8.9393 8.7102 8.7866 8.4973 8.5179 8.3086 8.3166
17 9.2306 9.2454 8.9171 8.9376 8.7092 8.7932 8.5027 8.5273 8.3151 8.3187
18 9.2303 9.2442 8.9181 8.9364 8.7142 8.7873 8.5018 8.5216 8.3134 8.3252
19 9.2271 9.2445 8.9155 8.9404 8.7091 8.7915 8.4992 8.5181 8.3091 8.3159
20 9.2284 9.2447 8.9243 8.9423 8.7127 8.7884 8.5061 8.5075 8.3098 8.3206
21 9.2294 9.2438 8.9223 8.9382 8.7120 8.7843 8.4990 8.5131 8.3087 8.3151
22 9.2314 9.2462 8.9203 8.9372 8.7188 8.7896 8.4965 8.5193 8.3166 8.3223
23 9.2296 9.2430 8.9185 8.9394 8.7161 8.7946 8.5001 8.5192 8.3152 8.3257
24 9.2280 9.2442 8.9188 8.9382 8.7102 8.7904 8.4944 8.5146 8.3121 8.3119
25 9.2308 9.2424 8.9260 8.9392 8.7133 8.7895 8.4963 8.5185 8.3175 8.3222
26 9.2286 9.2469 8.9223 8.9379 8.7176 8.7895 8.5009 8.5138 8.3170 8.3260
27 9.2306 9.2462 8.9230 8.9360 8.7092 8.7883 8.4991 8.5280 8.3101 8.3172
28 9.2296 9.2450 8.9222 8.9359 8.7165 8.7869 8.4976 8.5114 8.3227 8.3181
29 9.2318 9.2446 8.9222 8.9351 8.7143 8.7878 8.4955 8.5196 8.3131 8.3186
30 9.2308 9.2461 8.9238 8.9361 8.7100 8.7860 8.4969 8.5245 8.3172 8.3217

Table A.11: Record entropies on perturbed files for Wisconsin Breast Cancer
data set, intruder knows 1 attribute.

We again refer to Figure A.1 to discuss some important aspects of a

good choice for the probability parameters k1 and k2. The top left graph

of the figure compares different k2 values when the value of k1 = 2. Hence

the probability of an attribute remaining unchanged in the perturbed data

file is only twice the probability of it changing to another value in the same

partition. The three values for k2 shown in the top left graph of Figure

A.1 ar k2 = 2, k2 = 10 and k2 = 50. Note that for k2 = 2 the average

classification errors for the VICUS and Random method are effectively the

same. However, when k2 is increased significantly to 50, the difference in

error between the VICUS and Random methods is now significant with the

VICUS method’s average error being almost half that of the Random. The
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File WBC1 WBC2 WBC3 WBC4 WBC5
No. VICUS Random VICUS Random VICUS Random VICUS Random VICUS Random

1 3.3211 3.3216 3.3018 3.3179 3.2471 3.3016 3.2537 3.2799 3.2108 3.2494
2 3.3213 3.3215 3.2916 3.3108 3.2418 3.3070 3.2457 3.2929 3.2137 3.2426
3 3.3207 3.3216 3.2923 3.3146 3.2511 3.3064 3.2422 3.2787 3.2278 3.2506
4 3.3212 3.3215 3.2987 3.3170 3.2481 3.3041 3.2563 3.2833 3.2095 3.2531
5 3.3215 3.3214 3.3002 3.3168 3.2419 3.3022 3.2260 3.2944 3.2212 3.2567
6 3.3209 3.3212 3.3017 3.3173 3.2477 3.2918 3.2390 3.2885 3.2055 3.2522
7 3.3215 3.3215 3.2943 3.3184 3.2509 3.3088 3.2387 3.2850 3.2157 3.2393
8 3.3212 3.3218 3.2939 3.3157 3.2415 3.3067 3.2416 3.2976 3.2230 3.2525
9 3.3210 3.3216 3.3019 3.3178 3.2454 3.3054 3.2463 3.2837 3.2317 3.2563
10 3.3212 3.3217 3.2978 3.3184 3.2542 3.3002 3.2469 3.2918 3.2197 3.2334
11 3.3204 3.3215 3.3030 3.3175 3.2565 3.3105 3.2473 3.2756 3.2119 3.2358
12 3.3212 3.3217 3.2991 3.3156 3.2490 3.3070 3.2461 3.2887 3.2293 3.2393
13 3.3214 3.3216 3.2969 3.3181 3.2414 3.3053 3.2432 3.2890 3.2349 3.2530
14 3.3214 3.3214 3.2869 3.3163 3.2457 3.3129 3.2552 3.2842 3.2273 3.2641
15 3.3211 3.3215 3.2992 3.3168 3.2495 3.3042 3.2473 3.2775 3.2171 3.2511
16 3.3211 3.3217 3.2927 3.3174 3.2424 3.3086 3.2404 3.3002 3.2108 3.2429
17 3.3216 3.3217 3.2908 3.3162 3.2562 3.3033 3.2476 3.2968 3.2145 3.2513
18 3.3215 3.3215 3.2950 3.3167 3.2527 3.3069 3.2416 3.2973 3.2145 3.2605
19 3.3210 3.3215 3.3000 3.3154 3.2519 3.3077 3.2326 3.2929 3.2148 3.2448
20 3.3213 3.3217 3.2933 3.3166 3.2532 3.3040 3.2378 3.2909 3.2212 3.2438
21 3.3213 3.3217 3.2890 3.3158 3.2502 3.3104 3.2458 3.2903 3.2137 3.2452
22 3.3212 3.3217 3.3021 3.3121 3.2439 3.3048 3.2469 3.2852 3.2144 3.2375
23 3.3213 3.3216 3.3030 3.3157 3.2482 3.2980 3.2397 3.2951 3.2201 3.2643
24 3.3197 3.3216 3.2948 3.3193 3.2498 3.3109 3.2473 3.2791 3.1962 3.2292
25 3.3216 3.3216 3.2990 3.3164 3.2525 3.3041 3.2519 3.2797 3.2242 3.2588
26 3.3211 3.3211 3.2953 3.3180 3.2472 3.2989 3.2380 3.2895 3.2149 3.2542
27 3.3213 3.3217 3.2914 3.3164 3.2517 3.3022 3.2366 3.2918 3.2207 3.2563
28 3.3215 3.3218 3.2971 3.3160 3.2415 3.3111 3.2498 3.2896 3.2267 3.2543
29 3.3209 3.3216 3.2968 3.3185 3.2465 3.2996 3.2370 3.2846 3.2250 3.2403
30 3.3211 3.3216 3.2919 3.3194 3.2428 3.3105 3.2330 3.2967 3.2219 3.2376

Table A.12: Confidential attribute entropies on perturbed files for Wisconsin
Breast Cancer data set, intruder knows 1 attribute

distribution of the classification errors for the 60 WBC3 perturbed files,

that is with k1 = 2 and k2 = 5, are shown in Figure A.2. Note that for the

VICUS files, to the left of the figure, the values fall within a much tighter

range than for the Random method.

The final graph in the top right hand side of Figure A.1 compares how

the decision tree classification errors change when for different values of k1

and k2 we always have k1 × k2 = 100. The three parameter combinations

shown, from left to right, are (k1 = 10, k2 = 10), (k1 = 5, k2 = 20) and

(k1 = 2, k2 = 50). We note that for the VICUS method, there is little change

in the average percentage of incorrectly classified instances (7.218, 8.019 and

7.989). Yet for the Random method the difference in errors between this

method and the VICUS method becomes more marked as the value for k2
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Figure A.2: Classification error distribution comparison for WBC3 pertur-
bation files.
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File WBC1 WBC2 WBC3 WBC4 WBC5
No. VICUS Random VICUS Random VICUS Random VICUS Random VICUS Random

1 18.7408 19.1801 6.0029 8.1991 6.0029 5.1245 6.0029 5.2709 5.4173 5.1245
2 53.4407 16.5447 4.978 11.5666 6.0029 10.5417 4.8316 5.8565 5.1245 5.4173
3 13.47 16.3982 7.1742 5.4173 6.0029 5.8565 6.0029 5.5637 6.0029 4.246
4 9.9561 13.47 6.0029 10.1025 6.0029 4.8316 6.0029 5.7101 6.0029 6.1493
5 15.8126 25.183 5.1245 8.1991 6.0029 7.3206 6.0029 5.7101 5.1245 5.4173
6 23.1332 12.0059 5.8565 3.9531 5.1245 6.735 4.246 5.4173 4.3924 4.5388
7 18.0088 16.8375 4.5388 4.5388 6.0029 4.5388 6.0029 6.2958 4.246 5.5637
8 9.9561 23.4216 6.0029 8.0527 5.8565 5.7101 6.0029 4.978 6.0029 5.4173
9 11.4202 15.662 4.8316 5.4173 6.0029 7.0278 4.978 4.8316 5.8565 4.0996
10 6.1493 17.2767 5.8565 4.5388 6.0029 5.8565 6.0029 3.3675 4.978 3.9531
11 17.1303 11.1274 6.1493 10.3953 6.0029 6.2958 6.0029 5.7101 4.6852 5.5637
12 15.5198 27.8184 5.5637 10.2489 6.0029 10.981 6.0029 6.735 4.3924 4.6852
13 14.7877 19.6192 4.989 7.9063 4.6852 5.7101 6.1493 5.4173 5.8565 5.5637
14 10.2489 22.5476 9.3704 9.9561 6.0029 8.1991 5.1245 4.3924 4.5388 3.5139
15 18.5944 19.9122 6.2958 8.9312 6.0029 4.6852 6.0029 5.8565 4.978 3.2211
16 14.3485 12.4451 5.1245 6.1493 6.0029 4.5388 6.0029 5.4173 4.6852 3.5139
17 14.0556 14.9341 5.8565 5.1245 6.0029 4.246 6.0029 6.1493 5.4173 4.6852
18 8.9312 22.1083 6.1493 13.0307 6.0029 5.5637 6.1493 4.6852 4.6852 6.422
19 12.7379 10.8346 5.7107 11.1274 6.0029 5.4172 6.0029 5.2709 5.1245 4.987
20 32.2108 15.3734 6.4422 5.8565 6.0029 7.0278 6.0029 5.7101 5.1245 4.246
21 8.4919 14.6413 5.1245 8.6384 6.0029 5.8565 6.0029 5.8565 6.0029 5.7101
22 23.4261 34.9927 6.0029 11.8594 5.7107 5.2709 6.0029 5.4173 6.1493 5.2709
23 18.8873 15.5198 5.5637 6.735 6.0029 5.8565 6.0029 5.5637 4.978 5.4173
24 10.6881 9.6633 5.1245 6.5886 6.0029 10.1025 5.2709 5.1245 4.5388 5.5637
25 16.2518 18.448 4.978 10.1025 6.0029 7.4671 6.0029 5.5637 5.4173 3.8067
26 16.8375 12.1523 5.2709 5.8565 5.1245 5.8565 6.0029 5.2709 4.6852 3.9531
27 13.3236 30.6003 6.0029 5.7101 6.0029 6.0029 6.0029 5.4173 4.978 4.5388
28 10.5417 22.8404 5.1245 8.3455 6.0029 5.7101 6.0029 8.3455 4.6852 7.0278
29 12.8843 11.2738 5.5637 12.0059 6.0029 6.1493 8.4919 4.0996 6.0029 5.1245
30 12.8843 19.4729 5.5637 4.8316 6.0029 4.8316 6.0029 4.6852 5.7101 4.46

Table A.13: Percentage of incorrectly classified instances for J48 decision
tree builder on perturbed files for Wisconsin Breast Cancer data set, when
the perturbed file is tested using the original file.

grows (9.517, 10.791 and 14.607).
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File WBC1 WBC2 WBC3 WBC4 WBC5
No. VICUS Random VICUS Random VICUS Random VICUS Random VICUS Random

1 30.7467 33.2357 15.8162 20.6442 7.3206 14.3485 8.1991 11.2738 9.2240 10.5417
2 30.7467 28.1113 14.4949 18.8873 7.1742 14.6413 6.8814 10.1025 7.4671 9.2240
3 32.0644 28.8433 15.6662 20.2050 7.4671 15.0805 8.0527 10.6881 9.2240 8.7848
4 30.6003 27.6720 16.2518 20.4978 8.9312 13.0307 8.9312 12.1523 7.9063 9.8097
5 31.6252 29.5754 14.7877 19.6193 7.6135 14.0556 8.0527 11.4202 6.4422 9.3704
6 31.9180 32.9429 14.6413 22.1083 8.6384 14.9341 7.4671 10.1025 6.1493 8.0527
7 33.2357 29.5754 13.4700 20.6442 7.9063 15.0805 7.7599 11.2738 5.5637 8.4919
8 26.3543 35.5783 14.4949 20.4978 9.0776 14.0556 7.4671 12.1523 7.9063 8.1991
9 35.1391 31.4788 14.9341 18.7408 9.2240 12.7379 8.4919 12.4451 7.4671 11.2738
10 36.0176 28.8433 14.2020 22.5476 8.3455 15.8126 8.3455 9.3704 7.9063 10.8346
11 31.1859 29.7218 13.4628 21.5227 8.4919 14.3485 7.4671 10.8346 6.0029 9.6633
12 34.4070 37.7745 13.4700 19.4729 8.3455 14.6413 9.2240 13.1772 7.1742 8.7848
13 33.5286 36.3104 12.8843 20.9370 8.4919 14.6413 7.7599 10.8346 7.1742 12.2987
14 37.9209 32.2108 13.9092 21.8155 7.4671 15.5198 7.3206 9.8097 8.0527 9.3704
15 33.5286 33.9678 14.2020 21.8155 7.6135 15.5198 8.1991 10.1025 7.9063 9.3704
16 33.5286 31.3324 15.3734 17.5695 7.0278 14.2020 7.7599 11.4202 7.0278 8.3455
17 38.0673 33.2357 16.5447 18.5944 7.9063 15.3734 8.3455 9.8097 6.4422 8.4919
18 30.6003 33.5286 15.3734 20.6442 8.1991 16.5447 7.9063 12.8843 6.2958 9.2240
19 30.7467 34.4070 13.0307 19.0337 7.4671 14.6413 8.6384 10.3953 6.2958 9.2240
20 32.7965 29.5754 15.3734 20.3514 8.0527 13.3236 7.3206 10.3953 7.4671 7.7599
21 35.8712 33.8214 14.6413 21.8155 7.7599 15.2269 8.3455 10.2489 7.9063 10.3953
22 32.3572 40.1171 16.1054 21.5227 8.6384 15.2269 8.9312 9.9561 6.8814 9.6633
23 29.4290 32.0644 15.0805 18.7408 7.6135 13.9092 7.9063 10.5417 6.8814 11.7130
24 31.6252 35.2855 15.0805 19.7657 7.6135 14.6413 6.7350 10.1025 6.0029 11.5666
25 29.1362 28.8433 14.0556 20.3514 7.6135 12.1523 8.4919 10.2489 8.1991 8.6384
26 31.9180 31.4788 14.7877 20.9370 8.7848 12.7379 8.0527 9.3704 6.8814 9.8097
27 32.5037 33.3821 15.9590 20.7906 8.4919 14.4949 8.1991 10.6881 6.8814 9.6633
28 33.6750 34.1142 14.9341 20.0586 7.4671 15.9590 7.7599 13.0307 7.4671 9.9561
29 31.4788 29.4290 14.4949 20.0586 7.3206 17.1303 8.0527 9.8097 7.4671 8.0527
30 28.9898 30.8931 16.3982 20.3514 7.6135 14.2020 8.4919 9.0776 6.8814 8.9312

Table A.14: Percentage of incorrectly classified instances for J48 decision
tree builder on perturbed files for Wisconsin Breast Cancer data set, when
the perturbed file is used for both training and testing.

Perturbation k1 k2 VICUS Random

WBC1 2 2 32.391 32.245

WBC2 2 10 14.807 20.351

WBC3 2 50 7.989 14.607

WBC4 5 20 8.019 10.791

WBC5 10 10 7.218 9.517

Table A.15: Average percentage of incorrectly classified instances for WBC
perturbations, when the perturbed file is used for both training and testing.



A.5. Wisconsin Breast Cancer 202

A.5.1 Security Measure Figures

1 2 3 4 5 6 7 8 9
2

3

4

5

6

7

8

9

10

Wisconsin Breast Cancer
Comparing entropy to the number of attributes know to the intruder

number of attributes known to the intruder

en
tr

op
y

 

 
VICUS (k1=2, k2=2)
Random (k1=2, k2=2)
VICUS (k1=10, k2=10)
Random (k1=10, k2=10)

Figure A.3: Comparing record entropy to the number of attributes known
by intruder, WBC data set.
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Figure A.4: Comparing confidential entropy to the number of attributes
known by intruder, WBC data set.
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Figure A.6: Record entropy sensitivity for when the user knows 1 particular
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Figure A.9: Distribution of record entropies when user knows 2 attributes
for each individual attribute combination, WBC data set.



A.5. Wisconsin Breast Cancer 209

7.4 7.6 7.8 8 8.2 8.4 8.6 8.8 9
0

1

2

3

4

5

6

7

8

9

10

Wisconsin Breast Cancer − WBC3
Distribution of record entropies for VICUS

Average over 30 perturbed files
Intruder knows 1, 2, and 3 attributes

entropy

su
pp

or
t

Figure A.10: Distribution of record entropies when user knows 1, 2 and 3
attributes, averaged over the 30 perturbed files, WBC data set.
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averaged over the 30 perturbed files, WBC data set.
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A.6 ACS PUMS

The original PUMS file contained 2,9969,741 records and by only considering

those records without any missing values on the subset chosen we selected

20,000 random records from the remaining 1,348,929. For attributes 1 and

2, that is those relating to income, we rounded the values to the nearest

5,000.

The vertex numbering and corresponding attribute values are given in

Tables A.16 through A.31.
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Attribute Value Vertex Attribute Value Vertex

Number Number

WAGP 0 1 WAGP 190000 39

5000 2 195000 40

10000 3 200000 41

15000 4 205000 42

20000 5 210000 43

25000 6 220000 44

30000 7 225000 45

35000 8 230000 46

40000 9 235000 47

45000 10 240000 48

50000 11 245000 49

55000 12 250000 50

60000 13 260000 51

65000 14 265000 52

70000 15 270000 53

75000 16 285000 54

80000 17 290000 55

85000 18 295000 56

90000 19 300000 57

95000 20 305000 58

100000 21 310000 59

105000 22 315000 60

110000 23 320000 61

115000 24 330000 62

120000 25 335000 63

125000 26 340000 64

130000 27 350000 65

135000 28 360000 66

140000 29 370000 67

145000 30 380000 68

150000 31 400000 69

155000 32 410000 70

160000 33 415000 71

165000 34 420000 72

170000 35 495000 73

175000 36 505000 74

180000 37 560000 75

185000 38 645000 76

Table A.16: Vertex labeling for PUMS data set, Attribute 1 WAGP (Wage
or salary income past 12 months, rounded to nearest 5,000
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Attribute Value Vertex Attribute Value Vertex

Number Number

PINCP -15000 77 PINCP 285000 137
-10000 78 290000 138
-5000 79 295000 139

0 80 300000 140
5000 81 305000 141
10000 82 310000 142
15000 83 315000 143
20000 84 320000 144
25000 85 325000 145
30000 86 330000 146
35000 87 335000 147
40000 88 340000 148
45000 89 345000 149
50000 90 350000 150
55000 91 355000 151
60000 92 360000 152
65000 93 365000 153
70000 94 370000 154
75000 95 375000 155
80000 96 380000 156
85000 97 385000 157
90000 98 390000 158
95000 99 400000 159
100000 100 405000 160
105000 101 410000 161
110000 102 415000 162
115000 103 420000 163
120000 104 425000 164
125000 105 430000 165
130000 106 435000 166
135000 107 440000 167
140000 108 445000 168
145000 109 450000 169
150000 110 455000 170
155000 111 460000 171
160000 112 465000 172
165000 113 485000 173
170000 114 490000 174
175000 115 495000 175
180000 116 500000 176
185000 117 505000 177
190000 118 510000 178
195000 119 515000 179
200000 120 525000 180
205000 121 535000 181
210000 122 545000 182
215000 123 550000 183
220000 124 555000 184
225000 125 560000 185
230000 126 565000 186
235000 127 595000 187
240000 128 635000 188
245000 129 640000 189
250000 130 650000 190
255000 131 665000 191
260000 132 785000 192
265000 133 810000 193
270000 134 820000 194
275000 135 850000 195
280000 136

Table A.17: Vertex labeling for PUMS data set, Attribute 2 PINCP (Total
person’s income), rounded to nearest 5,000
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Attribute Value Vertex Attribute Value Vertex

Number Number

WKHP 1 196 WKHP 44 239

2 197 45 240

3 198 46 241

4 199 47 242

5 200 48 243

6 201 49 244

7 202 50 245

8 203 51 246

9 204 52 247

10 205 53 248

11 206 54 249

12 207 55 250

13 208 56 251

14 209 57 252

15 210 58 253

16 211 60 254

17 212 61 255

18 213 62 256

19 214 63 257

20 215 64 258

21 216 65 259

22 217 66 260

23 218 67 261

24 219 68 262

25 220 69 263

26 221 70 264

27 222 72 265

28 223 73 266

29 224 75 267

30 225 76 268

31 226 77 269

32 227 78 270

33 228 80 271

34 229 83 272

35 230 84 273

36 231 85 274

37 232 86 275

38 233 89 276

39 234 90 277

40 235 92 278

41 236 95 279

42 237 96 280

43 238 99 281

Table A.18: Vertex labeling for PUMS data set, Attribute 3 WKHP (Usual
hours worked per week past 12 months) top-coded at 99 hours
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Attribute Value Vertex

Number

WAOB United States 282

Puerto Rico and US Island Areas 283

Latin America 284

Asia 285

Europe 286

Africa 287

Northern America 288

Oceania and at sea 289

Table A.19: Vertex labeling for PUMS data set, Attribute 4 WAOB (World
area of birth)

Attribute Value Vertex

Number

RAC1P White alone 290

Black or African American alone 291

American Indian alone 292

Alaska Native alone 293

American Indian and Alaska Native tribes specified; 294

or American Indian or Alaska Native, not specified

Asian alone 295

Native Hawaiian and other Pacific Islander alone 296

some other race alone 297

Two or more major race groups 298

Table A.20: Vertex labeling for PUMS data set, Attribute 5 RACE1P (Re-
coded detailed race code)

Attribute Value Vertex

Number

JWTR Car, truck or van 299

Bus or trolley bus 300

Streetcar or trolley car 301

Subway or elevated 302

Railroad 303

Ferryboat 304

Taxicab 305

Motorcycle 306

Bicycle 307

Walked 308

Worked at home 309

Other method 310

Table A.21: Vertex labeling for PUMS data set, Attribute 6 JWTR (Means
of transportation to work)
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Attribute Value Vertex Attribute Value Vertex

Number Number

ST Alabama 311 ST Montana 337

Alaska 312 Nebraska 338

Arizona 313 Nevada 339

Arkansas 314 New Hampshire 340

California 315 New Jersey 341

Colorado 316 New Mexico 342

Connecticut 317 New York 343

Delaware 318 North Carolina 344

District of Columbia 319 North Dakota 345

Florida 320 Ohio 346

Georgia 321 Oklahoma 347

Hawaii 322 Oregon 348

Idaho 323 Pennsylvania 349

Illinois 324 Rhode Island 350

Indiana 325 South Carolina 351

Iowa 326 South Dakota 352

Kansas 327 Tennessee 353

Kentucky 328 Texas 354

Louisiana 329 Utah 355

Maine 330 Vermont 356

Maryland 331 Virginia 357

Massachusetts 332 Washington 358

Michigan 333 West Virginia 359

Minnesota 334 Wisconsin 360

Mississippi 335 Wyoming 361

Missouri 336

Table A.22: Vertex labeling for PUMS data set, Attribute 7 ST (State code)
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Attribute Value Vertex Attribute Value Vertex

Number Number

ANC1P Alsation 362 ANC1P Czech 395

Austrian 363 Bohemian 396

Basque 364 Czechoslovakian 397

Belgian 365 Hungarian 398

Flemish 366 Latvian 399

British 367 Lithuanian 400

British Isles 368 Macedonian 401

Danish 369 Polish 402

Dutch 370 Romanian 403

English 371 Russian 404

Finnish 372 Serbian 405

French 373 Slovak 406

German 374 Slovene 407

Prussian 375 Ukrainian 408

Greek 376 Yugoslavian 409

Irish 378 Herzegovinian 410

Italian 379 Slavic 411

Sicilian 380 Slavonian 412

Luxemburger 381 Northern European 413

Maltese 382 Western European 414

Norwegian 383 Eastern European 415

Portuguese 384 European 416

Scotch Irish 385 Spaniard 417

Scottish 386 Mexican 418

Swedish 387 Mexican American 419

Swiss 388 Mexicano 420

Welsh 389 Chicano 421

Scandinavian 390 Mexican American Indian 422

Celtic 391 Mexican State 423

Albanian 392 Costa Rican 424

Bulgarian 393 Guatemalan 425

Croatian 394 Honduran 426

Table A.23: Vertex labeling for PUMS data set, Attribute 8 ANC1P (Re-
coded detailed ancestry) Part I
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Attribute Value Vertex Attribute Value Vertex

Number Number

ANC1P Nicaraguan 427 ANC1P Brazilian 459

Panamanian 428 Guyanese 460

Salvadoran 429 Egyptian 461

Central American 430 Moroccan 462

Argentinean 431 Iranian 463

Bolivian 432 Iraqi 464

Chilean 433 Israeli 465

Columbian 434 Jordanian 466

Ecuadorian 435 Lebanese 467

Peruvian 436 Syrian 468

Venezuelan 437 Armenian 469

South American 438 Turkish 470

Latin 439 Yemeni 471

Latino 440 Palestinian 472

Puerto Rican 441 Assyrian 473

Cuban 442 Chaldean 474

Dominican 443 Mideast 475

Hispanic 444 Arab 476

Spanish 445 Arabic 477

Spanish American 446 Other Arab 478

Barbadian 447 Cape Verdean 479

Belizean 448 Ethiopian 480

Jamaican 449 Eritrean 481

Dutch West Indian 450 Ghanian 482

Trinidadian Tobagonian 451 Kenyan 483

British West Indian 452 Liberian 484

Antigua and Barbuda 453 Nigerian 485

Grenadian 454 Sierra Leonean 486

Vincent-Grenadine Islander 455 Somalian 487

West Indian 456 South African 488

Haitian 457 Sudanese 489

Other West Indian 458 Other Subsaharan African 490

Table A.24: Vertex labeling for PUMS data set, Attribute 8 ANC1P (Re-
coded detailed ancestry) Part II
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Attribute Value Vertex Attribute Value Vertex

Number Number

ANC1P Western African 491 ANC1P Samoan 523

African 492 Tongan 524

Afghan 493 Guamanian 525

Bangladeshi 494 Chamorro Islander 526

Nepali 495 Fijian 527

Asian Indian 496 Pacific Islander 528

East Indian 497 Afro American 529

Pakistani 498 African American 530

Sri Lankan 499 Black 531

Burmese 500 Negro 532

Cambodian 501 Central American Indian 533

Chinese 502 South American Indian 534

Cantonese 503 Native American 535

Mongolian 504 Indian 536

Filipino 505 Cherokee 537

Indonesian 506 American Indian 538

Japanese 507 White 539

Okanawan 508 Anglo 540

Korean 509 Pennsylvania German 541

Laotian 510 Canadian 542

Hmong 511 French Canadian 543

Malaysian 512 Acadian 544

Thai 513 Cajun 545

Taiwanese 514 American or United States 546

Vietnamese 515 Texas 547

Eurasian 516 North American 548

Asian 517 Mixture 549

Other Asian 518 Uncodable Entries 550

Australian 519 Other Groups 551

New Zealander 520 Other Responses 552

Polynesian 521 Not Reported 553

Hawaiian 522 Icelander 377

Table A.25: Vertex labeling for PUMS data set, Attribute 8 ANC1P (Re-
coded detailed ancestry) Part III



A.6. ACS PUMS 220

Attribute Value Vertex Attribute Value Vertex

Number Number

AGEP 16 554 AGEP 54 592

17 555 55 593

18 556 56 594

19 557 57 595

20 558 58 596

21 559 59 597

22 560 60 598

23 561 61 599

24 562 62 600

25 563 63 601

26 564 64 602

27 565 65 603

28 566 66 604

29 567 67 605

30 568 68 606

31 569 69 607

32 570 70 608

33 571 71 609

34 572 72 610

35 573 73 611

36 574 74 612

37 575 75 613

38 576 76 614

39 577 77 615

40 578 78 616

41 579 79 617

42 580 80 618

43 581 81 619

44 582 82 620

45 583 83 621

46 584 84 622

47 585 85 623

48 586 86 624

49 587 87 625

50 588 88 626

51 589 89 627

52 590 92 628

53 591

Table A.26: Vertex labeling for PUMS data set, Attribute 9 AGEP (Age)
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Attribute Value Vertex

Number

CIT Born in the U.S. 629

Born in Puerto Rico, Guam, etc. 630

Born abroad of U.S parents 631

U.S. citizen by naturalization 632

Not a citizen of the U.S. 633

Table A.27: Vertex labeling for PUMS data set, Attribute 10 CIT (Citizen-
ship status)

Attribute Value Vertex

Number

COW Employee of a private for profit company. 634

Employee of a private not-for-profit organisation 635

Local Government employee 636

State Government employee 637

Federal Government employee 638

Self-employed in own not incorporated business 639

Working without pay in family business of farm 640

Unemployed 641

Table A.28: Vertex labeling for PUMS data set, Attribute 11 COW (Class
of Worker)

Attribute Value Vertex

Number

MAR Married 642

Widowed 643

Divorced 644

Separated 645

Never married or under 15 years old 646

Table A.29: Vertex labeling for PUMS data set, Attribute 12 MAR (Marital
status)



A.6. ACS PUMS 222

Attribute Value Vertex Attribute Value Vertex

Number Number

SCHL No school completed 647 SCHL High school graduate 655

Nursery school to grade 4 648 Some college, less than 1 year 656

Grade 5 or grade 6 649 One or more years of 657
college, no degree

Grade 7 or grade 8 650 Associate’s degree 658

Grade 9 651 Bachelor’s degree 659

Grade 10 652 Master’s degree 660

Grade 11 653 Professional school degree 661

Grade 12 no diploma 654 Doctorate degree 662

Table A.30: Vertex labeling for PUMS data set, Attribute 13 SCHL (Edu-
cational attainment

Attribute Value Vertex

Number

SEX Male 663

Female 664

Table A.31: Vertex labeling for PUMS data set, Attribute 14 SEX (Sex )
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